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ABSTRACT

The problem of estimating certain parameters of sources generating signals by
suitable array processing methods is investigated. The unknown source para-
meters are estimated by maximizing conditional likelihood functions which re-
quire to solve a nonlinear regression problem. Numerical experiments are used
to determine the statistical properties of those estimates and to compare
their variances with the theoretical Cramer Rao lower bound.

I. INTRODUCTION

The paper addresses the multiple source location problem which has been a re-
search topic in radar, sonar and seismology for many years. Frequently, certain
parameters of sources radiating signals are unknown and have to be estimated
by appropriate array processing methods. We shall examine the performance of
the nonlinear regression method which was described in {1} and {2} for estima-
ting bearing, range and the spectral density matrix of unknown signals. The
asymptotic properties of those estimates are known for a large number K of
observations and are indicated in {2}. However, of most interest is the be-
havior for moderate K which is investigated by extensive numerical experiments.
We shall show the results of such experiments and compare them with the pre-
dicted asymptotic properties of maximum likelihood estimates.

First of all, the data model is presented. In section III, we describe the
nonlinear regression method and outline the numerical procedure. It follows
the computation of the Cramer Rao lower bound for the unknown parameters in
section IV. In section V, a description of the statistical tools for analys-
ing the numerical experiments is given, and we finish with a- presentation

of the results and some concluding remarks.

IT. MODEL AND DATA

In Fig. 1, the geometric relations between sources and antenna elements in
the plane are shown. L sources are located in the farfield generating sta-
tionary signals. Some of them may be correlated, e.g. by multipath propa-

gation which is a general problem in underwater acoustics. The correlation
of source signals is described by the (LxL) spectral density matrix CS' The

distance from the origin O of the antenna to the 1°th source (1=1,...,L) is
indicated by pl, while Bl is the bearing of this source with respect to the

broadside direction of the antenna. An array of N sensors at known positions
(an, an) (n=1,...,N) in polar coordinates samples the wavefield. Then, the

propagation—rece?tion conditions can be described by a (NxL) matrix H with
-1 .
elements Hn1= N /exp(—jmrnl). If the sources generate spherical and co-

herent wavefronts which are not disturbed by the medium of propagation, the
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time delays
v = P1/ce (1-(14(Pn/p ) %-2(n /o) Yeos(o, 8,0 ) ) M

result from the geometric relations in figure 1. The constant c, is the

velocity of propagation. At the sensors, we measure the received signals and
independent sensor noise. From these measurements, we want to determine the
bearing Bl and range Py of every source, the spectral density matrix CS and

the power of sensor noise V.
In a first step, the data of the sensor outputs are Fourier-transformed with

a window of length T to get successive data pieces Ek(w)=(§}(w),...,§?(w))'
(k=1,...,K). In the following, we omit the notation of w and consider only
the narrowband case for a single frequency. For large T, we can write

§_=H§F+HF, where the §F's are the vectors of the unknown Fourier-transformed

signals and the Qk's describe the sensor noise. From the statistical proper-
ties of the Fourier-transformed data, we know that, for a large window length,

1 K . . . .
X ,...,X are independent random vectors with zero mean and covariance matrix

CU. In the following, we restrict ourselves to the simple case of CU=vI, where

I is the unit matrix. Any other structure of CU can be reduced to this form by
prewhitening the data if CU is known except for a ?calingk Then, Ye can Erite,
considering conditionally distributed data given S°,...,S , the X',...,X" are
independent normally distributed random vectors with mean H§k and covariance
matrix vI. '

IITI. ESTIMATION OF PARAMETERS

For the estimation of the unknown parameters, we use the nonlinear regression
method developed in {1} and {2}. The conditional likelihood function for data

Xk can be written
K sk ‘
A= 2m) V(det CU)‘lexp(-(gk-}@k) ot () (2)
k=1
The asterisk means the hermitian operation. This equation can be reduced to a
least square problem for CU=VI:
- 1 5k Lok 2
L = 1nA = -NKIn(2mv)-= ] |X*-HS™|° . (3)
k=1

K

Now we have to minimize the criterion |§k—H§k|2 over all parameters sum-
k=1

marized to the vectors g, p and S. Fixing the wave parameters § and p and

solving for S, we get
§k _ (H*H)—leXF (4)

if H H is nonsingular. Using the result for §F in (3), we can find the para-
meters @ and p by minimizing the new criterion

a(8,0) = tr(P(8,p)Cy) (5)
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K s
over the unknown parameters, where CX = %% ) Xkﬁk is an estimate of the
k=1

* ] %
spectral density matrix of the sensor outputs and P=I-H(H H) 1H is the pro-
jection matrix into the noise space orthogonal to the signal subspace spanned
by the columns of H.

v = q(B,p)/(N-L) (6)

is a reasonable estimate of the noise power v for optimum estimates B and p
"which is the maximum likelihood estimate for v except for a scale factor.

The wave parameters are determined by the Gauss-Newton iterative procedure for
minimizing the criterion q. We can write 6=(8',p')' and

6™ = 8" — (W') lvg | (7

where V is the operator for the gradient and ' indicates a transposed vector.
Instead of calculating the Hessian matrix of second derivatives (VV'q) which
is an extensive computational task, we use a much simpler approximation re-
placing the estimate CX by the covariance matrix CX inside the Hessian matrix:

' __0%q _ & 2% %P
(W'a)iy =558 = ©(Cx 5908 ) = v (Cy 5535 )
ik ik i 7k
*
oH  9H -
= 2Re{tr (CS a_eip _aek]} (i,k=1,...,2L) (8)
v %
where CX = HCSH + vl. X . K k1

For C, we use the estimate C, = 3 2 S°ST ~v(H H) | n

* <A B I
T CHE B TS
that was given by Wax in {3}. - _
For a successful: application of the Gauss-Newton procedure it is very import-
ant to have a good initial estimate of the wave parameters close to the op-
timal values maximizing the likelihood function. A simple and computationally
efficient method satisfying these requirements was introduced in {1}. This
method yields good estimates if the columns of H are approximately orthogonal.

IV. CRAMER RAO LOWER BOUNDS OF PARAMETER ESTIMATES

The asymptotic properties of the estimates are only known for a large window
length T and a large number of observations K. However, these conditions are
not satisfied in practice. To have an objective measure of the performance of
the nonlinear regression method, we can compare the theoretical lower bounds
for the estimates which are given by Cramer and Rao with the results of nu-
merical experiments. This is done for one special configuration of signals and
different signal to noise ratios in this paper. For the theoretical bounds, we
use the nonconditional likelihood function which is given by ’

I -1 A -1
T= 1 (2mNder Cp)  exp(-tr(Gycrh)) (10)
k=1
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A K %k
Here, CX = %'k§1z¥§k is the estimate of the spectral density matrix of the
sensor outputs XF which are complex normally distributed with mean zero and
%
covariance matrix CX=H(§*Q)CSH(@”Q) +vI. The lower bound of the covariance

matrix of unbiased parameter estimates is given by

. A A A _l
COV(§593§_) z J- (E!Qvé) . (11)
J is the Fisher information matrix defined by

azll'IK )

_ _ T A1 gty
ik = ~El 96,06, g=@®2%8")
We get *
-1 9aC -1 aC .
Jik - tr(CX ae§ CX 8e§) (l$k=17"'!3L) . (12)

The explicite calculation of Jikis a difficult task and only possible for a
few simple signal configurations, e.g. uncorrelated and clearly separated sig-
nals:CS=diag(S%) and H H=I. Under these conditions all parameter estimates are

uncorrelated. The numerical calculation of Jml(ﬁlgag) shows that bearing and
power estimates for closely spaced (separated less than about 2/3 of a beam-
width) but independent signals are correlated. The correlation increases with
decreasing signal to noise ratio or decreasing separation. For an equispaced
line array, the range estimates are uncorrelated from all other parameters.
Details of this investigation and other results are part of a forthcoming PhD
dissertation of the first author. A comparison of theoretical bounds and ex-—
perimental results is given in VI.

V. STATISTICAL ANALYSIS

In this section, we outline the statistical methods which were used for the
interpretation of the numerical experiments. Using statistical tools for the
analysis of data, we have to pay attention to 4 points. First, the number of
numerical experiments has to be large enough to be of statistical evidence.
This is only a problem of computer power. Secondly, we have to take in mind
that the parameter estimates are not normally distributed in general. However,
many statistical tools work well only for normally distributed data. It is
known that the mediancan be a better estimate for the expectation value than the
mean, if the distribution of the parameter is not gaussian. Therefore, we use
the median U instead of the mean in the following and define the median deviat-
ion as the length s of an interval for which 68.27 % of the data are inside

the interval (u-s,u+s). This is identical to the standard deviation in the

case of a normal distribution. For range and power, we use the logarithms of .the
estimates related to the array length or the power of noise, resp. because there
distributions are distinctly nonnormal and skew. Thirdly, we have to deal with
outliers in a useful manner. Especially, estimates of higher moments using
powers of the data values for their calculation are falsified by outliers. To
avoid this, the rank correlation coefficient of Spearman {4} is used as measure
for correlation between parameter estimates. It is also well appropriate for
nonnormal data. The definition of the median deviation given above simplifies
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the handling of outliers, too. The last point is only important if we have
more than one source. In this case, we must find the right association bet-
ween the true sources and their estimates. The identification is done in the
order to their closeness with the condition that for each true source, we
have exactly one estimated source.

To make the accuracy of the estimates, their distribution and the relation-
ship between parameters visible in only one picture, we use 2-dim. estimated
confidence regions which are calculated as follows. For every interesting
pair of the 3L+l parameters ((bearing + range + power) x L + noise), we com-
pute a 2-dim. histogram in polar coordinates centered at the median of these
parameters. Radially departing from the median, we find a boundary for which
a given percentage of the data is located inside this boundary. This is done
for levels of 20, 40, 60, 80, 90, 95 and 98 per cent of the estimates. For
the statistical analysis, the results of all experiments including outliers
were used.

VI. RESULTS

In our numerical experiments, we used a line array of 15 sensors spaced by
half a wavelength. We analysed several different signal configurations. The
results of one interesting configuration are presented in the following. A
weak source of -3 dB signal to noise ratio (10 log CSii/v) located in a dis-
tance of 40 times the array length was surrounded by 2 strong sources of 4 dB
power separated in bearing by 2/3 of a beamwidth in a distance of 32 and 20
array lengths, respectively. All signals were independent. The matrices CX

were simulated by complex Whishart matrices with 20 degrees of freedom. The
results of 2048 independent experiments are shown in Fig. 2a and 2b. The
positions of the true sources are marked by big cross s.
Confidence regions of all signals numbered from left to right are plotted in
Fig. 3a-c for bearing and power and in Fig. 4a-c for bearing and range.
Small crosses indicate the mean and small circles the median of the estimates.
The rank correlation coefficient is noted by RS. There are a lot of outliers
of the weak signal scattered over all bearings which are not visible in Fig. 2
but obvious by the deformations of the confidence regions.
The experiments show that estimates of closely spaced sources are influenced
by each other. Bearing and power estimates are correlated even for independ-
ent sources. However, range estimates are uncorrelated with all other para-
meters which corresponds to the theoretical results. The estimates of well
separated sources are stable and uncorrelated. The bearing estimates are ap-
proximately normally distributed in contrast with power and range estimates.
If sources are less separated than =1/3 of a beamwidth, the estimates of bear-
ing can deviate from a normal distribution, too. The median is a better esti-
mate for the unknown parameter than the mean.
~In Fig. 5a-c, we compare the Cramer Rao bounds (continous lines) and the ex-
perimental results (dashed lines) for the parameters of signal 1-3. The lines
were calculated in 1 dB steps equally lifting up or setting down the power of
all signals relative to the configuration described above. Here, we used 256
experiments for each step.
For strong and independent signals, the Cramer Rao bound is a suitable pre-
diction for the variance of the estimates. But for weak and correlated esti-
mates, there are increasing discrepancies, e.g. the theoretical bound for the
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range deviation of the weak signal is much higher (by about 14 dB) than the
experimental result.

VII. CONCLUDING REMARKS

We showed that the lower bounds for the variances of the parameter estimates
can be approached by the nonlinear regression method for strong signals. Para-
meter estimates are correlated if the sources are not well separated even if
the signals are independent. The accuracy and the distribution of the esti-
mates were represented for one special configuration of signals.

In the examples we assumed the number of signals, but in the general case L
has to be estimated. Space limitations do not permit us to investigate this
problem more detailed. The results of other experiments show that Rissanen’s
criteria, as discussed in {5} , give a good estimate for L, while Akaike’s
criteria overestimate the number of signals.
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Fig. 1 Geometric relation between
sources and array elements:
S1 1th source with bearing

Bl and range P1 related to

the origin O of the antenna;
(an,an) position of the nth

Sensor; time delay; c,

Thi
velocity of propagation
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