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1. INTRODUCTION

Speech pattern classification can be loosely split into two stages. The first stage involves the
appropriate selection of features of the different speech patterns and the second involves the use of
a classifier to from class boundaries in the feature space. Neural networks have emerged as a class
of powerful nonlinear classifiers and have performed well on classifying static speech patterns [1],
|2]. One of the problems associated with using neural networks is the selection of the size of the
network for a given classification prohlem.

The neural network classifier is built by posing the task as a function interpolation or appreximation
problem. The function estimation approach is therefore the appropriate framework to analyse
neural network learning where the task is to estimate or approximate the underlying function from
given data. We have adopted this approach to sclve the problem of sequential learning with neural
networks and derived a network that modifies its architecture dynamically (3}, [4]. This network
resembles the form of the resource allocating network (RAN) [5] and is also similar to the restricted
Coulomb energy (RCE) model of classification [6].

The architecturally dynamic network presented here is a Gaussian radial basis function {(GaRBF)
network that begins with no hidden units and grows by adding hidden units based on the novelty
of the present observation. It learns from each observation sequentially and the estimate of the
underlying mapping is formed such that it attempts to combine the past and present information
optimally. The network was originally formulated for a single output network and used in solving
function approximation and time-series prediction problems [3], [4].

In this paper, we extend the network to include multiple outputs. We also incorporate an efficient
(memory requirements-wise) algorithm based on the Kalman filter to train the growing network.
We apply this network to the problem of pattern classification. Results on the classification of the
Peterson-Barney vowel data are presented in which the classes averlap considerably. We show that
the dynamic network attajns a performance comparable to other reported results with fixed size
networks and nearest neighbour methods.

2. THE ARCHITECTURALLY DYNAMIC NETWORK

The basis for the architecturally dynamic network lies in the function space approach 1o sequential
learning with neural networks [3], [4] which reduces to the resource allocating network (RAN) [5).
The network presented here extends the network considered in [3], [4], [5] by consisting of multiple
oulput units and the appropriate modification of the growth criteria. Since each output unit maps
a function, the function space approach can be readily used. The only difference being the basis
functions common to all output mappings.
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The network maps an M-dimensional input x € ®M to an L-dimensional output y € R%. The
network output response to an input pattern is a linear combination of the hidden unit responses
given by,

F(x) = W&(x) (1)
where ®(x) = {${x),...,dx(x),. ..,q&y(g:_ic]]T is the vector formed by the responses of the hidden
units to the input pattern The W = [wy,. S, . W] is the weight matrix of the hidden to
output layer weights or coefficients. Hence, the I ontput unit response is given by,

fitx)=wi® = Z wikdr(x) (2)
The k* hidden unit response is given by the Gaussian radial basis function (GaRBF},

Bu(x) = exp { -dii I - ukil’} @)

where ug is the unit centre or mean of the Gaussian and oy is the spread of the neighbourhood or
width of the Gaussian. Platt [5] describes the operation of a hidden unit as staring a local region in
the input space — the neighbourhood of u,. Hence, the u; may be viewed as stored patterns. The
weights of the hidden - output layer, coefficients wy, determines the contribution of each hidden
unit to a particular output unit.

The network begins with no hidden units. The observations are in the form (xg,yn), where y,
is the target output pattern associated with the input pattern x,. As observations are received
the network grows by storing some of them by adding new hidden units. The decision to store an
observation (x,,¥.) depends on its novelty, for which the {ollowing two conditions must be met:

%n = Warll > €4 (4)

€y = 2> Emin (5)

where ||.]| is the L3-norm or Euclidean norm, ¢,, g, are thresholds, u,, is the nearest stored
pattern to X, in the input space, vir.,

Up, = ar min Xn— U 6

nr g g i [|%n el (6)

and eyq is the largest error in the output units between the network response and the target,
en = max{en,,... En;r. - ,€n;} (7)
where e, is the output error vector given by,
en = ¥n — F(x,) (8)

The first criterion says that the input must be far away from stored patterns and the second
criterion says that the error in atleast one of the netwark output units between the response and
the target must be significant. The value en,, is chosen to represent the desired accuracy of the

. network at all output units. The distance ¢, represents the scale of resolution in the input space
in which the approxlmal:on is done.
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When a new hidden unit (X*"} is added to the network, the parameters or weights associated with
this unit are assigned as follows:

[MK,...,WLK]T = €n (9)
ux = Xn (10)
Ok = Kfxn = unl| (11)

where x is an overlap factor which determines the overlap of the responses of the hidden units in the
input space. The value for the width ox is based on a nearest neighbour heuristic. The addition
of a GaRBF hidden unit centred on an observation is similar in spirit to the nearest neighbour and
Parzen window methods [7] in which all input observations are retained.

The network begins with €, = €uax, the largest scale of interest, typically the size of the entire
input space of non-zero probability density {5]. The distance ¢, is decayed exponentially as,

€n = MaxX{€max 7", €min} (12)

where 0 < 7 < 1 i8 a decay constant. The value for ¢, is decayed until it reaches emin. The lower
bound ensures that the number of hidden units allocated are also bounded above,

The growth pattern of the RAN and the dynamic architecture network depends critically on v
which influences the rate of growth and on ey;, which determines the final size of the network
together with €min. These parameters have to be chosen a priori and hence the performance of the
network depends crucially on their appropriate selection. The exponential decaying of the distance
criterion allows fewer basis functions with large widths (smoother basis functions) initially and with
increasing number of observations, more basis functions with smaller widths are allocated to fine
tune the approximation.

When the observation (x,,,¥,) does not satisfly the novelty criteria, the existing (K —1) hidden unit
network parameters ¢ = {wi,...,w{,uf,..., g _1,01,--. ,0k-1]7, are adapted by the extended
Kalman filter (EKF) algorithm. An alternative to the EKF would be to use the LM5 algorithm
as suggested by Platt [5] for increased computational speed. However, RAN with EKF exhibite
fast convergence and also results in a network with smaller number of hidden units (3], [4]. In the
next section, we shall develop an algorithm that compromises between using EKF algorithm to
adapt the parameters to achieve fast convergence at the expense of added memory requirements
and computational complexity, and using the LMS algorithm for fast computation a1 the expense
of slow convergence.

3. THE ADAPTATION ALGORITHM
The EKF algorithm requires an additional memory for the error covariance matrix (square symmet-
ric) with storage requirements of %P(P + 1) where P is the number of parameters being adapted.
If we choose to adapt all the parameters c, then P = K'(L + M +1).

Given a parameter vector w, the EXF algorithm obtains the posterior estimate wi") from its prior
estimate win~1) and its prior error covariance estimate P,_; as follows (see [8]):

w("l = w(n-l} + enkn (13)
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where €, = y, — f(xn) is the prediction error and k, is the Kalman gain vector given by,

kn = [Ra+ aZPo 18]~ Pocia (149)

where a, = V,, f(X,) is the gradient vector and R, is the variance of the measurement noise. The
error covariance matrix is updated by,

P, = [I- k4a]| Pacy (15)

I being the identity matrix. The rapid convergence of the EKF algorithm may prevent the model
from adapting to future data. To avoid this problem, a random walk model is often used [9] where
the covariance matrix update becomes .

P, = [1-kaal| Poy + Qol (16)

The parameter {p is a scalar which determines the allowed random step in the direction of the
gradient vector.

Since the hidden 1o cutput layer weights w; are independent of each other, the estimate error
covariance matrix will contain a lot of 0 values and is a sparse matrix. Further, since the hidden
unit responses are commeon to all the weight vectors wy, the error covariance matrix of the estimates
for w; will be the same for all [. Hence by choosing to adapt the weight matrix W instread of the
entire set of parameters, we can reduce this memory requirement to K x K even though P = K L.

Applying the EKF algorithm to the network in which we adapt only the hidden to output layer
weights, provides the following adaptation algorithm:

win o Wil g e kT (17)
k, = [R,,+¢>1"Pn_1¢-n]" Poo1®, (18)
P, = [I-kntﬂ] Paoy + Gol (19)

where &, = [¢1(Xp),. .., ¢x(xa)]7 is the hidden unit response vector to the input x,.

The error covariance matrix Py, is a & x K positive definite symmetric matrix, where K is the
number of hidden units in the network. Whenever a new hidden unit is allocated the dimensionality
of Pp intreases by 1 and hence, the new rows and columns must be initialised. Since P, is an
estimnate of the error covariance of the parameters, we choose,

= (0" &) - (#0)

where Py is an estimate of the uncertainty in the initial va.lues assigned to the weights, which in
our case is also the variance of the obseryvation y,.
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4. SPEECH PATTERN CLASSIFICATION

The speech pattern classification task we have chosen here is the benchmark problem of classifying
Peterson — Barney vowel data which contain the first and second formant frequencies for 10 spoken
vowel classes, spoken by male, female and child American speakers. The training and test data
consists of 1000 and 500 observations respectively, the test data being independent of the training
data. This data contains classes which overlap considerably and hence is a difficult classification
problem. The training data is presented to the dynamic architecture network one by one and only
once. Figure 1 shows the growth of the network and the classification error percentage on the test
and training data. The curve for the training data represents the dassification error on only those
observations that have already been presented for training.
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Figure 1: The growth pattern and the classification error percentage with increasing number of
cbservations.

The final network had 85 hidden units to achieve a performance with around 24% classification
error on the test data. Figure 1 shows that the error tailing off after the network had used 350
observations for learning when the number of hidden units in the network was only around 55. This
demonstrates the redundancy of the hidden units prevalent in the final network and the need for
meodification of the growth criterion for classification problems which in the network is based strictly
on interpolation errors rather than on classification errors. The evolution of the class boundaries
with increasing number of hidden units and hence with increasing number of observations are shown
in figure 2. The observations used in learning the the boundaries are also shown. It illustrates the
essential feature of the dypamic network which attempts to use the present data be consistent with
that of the past from which it already has learned a representation.
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Figure 2: Evolution of the class boundary of the dynamic architecture network with increasing
number of hidden units K after seeing N observations. (a) K=10, N=87 (b) K=20, N=157 (<)
K=350, N=298 (d) K=85, N=1000.
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We also tested Platt’s RAN on the above data with each observation presented only once. At the
end of training, the RAN had formed 157 hidden units but its classification error percentage on
the training data was around 36% and on the test data was 39%. Tkis clearly demonstrates the
superior performance of the dynamic architecture network over the RAN which was also observed
in time-series prediction results [4].

The 24% classification error in the network is comparable to the simple and more complex methods
reported on the same but reduced size dataset. The data set used in our experiments contained
child speakers which adds to the difficulty of the classification problem than those in [1]. It is also
important 1o note that the results reported in [1] and [10] are obtained by using the data for many
iterations or using them en-bloc. Reported results include 22% error with a Gaussian RBF type
network by Bridle [10], in which a softmax function is used at the output and the parameters are
estimated by minimising an entropy measure. We give some of the results reported by Lowe [1}
and the results of our network in table 1. '

Classification Method % Error {Train data} | % Error (Test data}
Gaussian Classiher 23.37 25.15
Nearest Neighbour 0.00 22.52
Gaussian RBF {36 hidden) — 19.82
Thin plate spline RBF (32 hidden) — 18.92
Dynamic network (85 hidden) 23.42 24.60

Table 1: Results from standard classifiers, fixed size networks (from [1]) and the dynamic architec-
ture network (}Training and test data set was more than Lwice that used for other methods and
the observations were also presented only once in the sequential learning procedure). DCM stands
for distance to class mean.

Generally, the nearest neighbour methods give good classification performance. Their weakness lies
in the run time required fo find the best class for the given input pattern and the neéd to store the
entire set of data. The fixed size RBF networks store only a sub-set of the input patterns, learning
the input to output mapping, and its ran time to find the best class is also faster. However, they
requite the entire data set to be available for training. The dynamic network goes one step further
by training sequentially on each observation (seen only once) and chooses to store an input pattern
if jt is considered novel.

The architecturally dynamic network can be viewed as a combination of the nearest neighbour and
the function interpolation methods. It reaches a size that is smaller than what would be required
in the nearest neighbour method but is larger than the minimal network that would be arrived at
if the data were used en-bloc. However, finding this minimal network with fixed size networks in
practice requires many network configurations to be experimented and can be quite cumbersome.
The network presented here provides a trade-off by alleviating this difficulty while achieving the
same level of performance with a larger number of units.

Proc.).0.A. Vol 14 Part 6 (1992) 349




Proceedings of the Institute of Acoustics

DYNAMIC NETWORK FOR PATTERN CLASSIFICATION

5. CONCLUSION

We have presented an architecturally dynamic network for solving interpolation and pattern classi-
fication problems. A fast and efficient Kalman filter based adaptation algorithm has been presented
for this network. The network learns sequentially and sees an observation only once. The classifi-
cation performance of this network was comparable to other block estimation based results. The
advantages then are that learning is fast, memory requirements in terms of data storage are minimal
and more importantly the problem of choosing the size of the network a priori is eliminated. For
the network to be more efficient, pruning schemes must be introduced to remove redundant basis
functions (hidden units) whose contribution is minimal.
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