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I. INTRODUCTION

Speech pattern classification can he loosely split into two stages. The first stage involves the

appropriate selection of features of the different speech patterns and the second involves the use of

a classifier to from class boundaries in the feature space. Neural networks have emerged as a class

of powerful nonlinear classifiers and have performed well on classifying static speech patterns [1],

[2]. One of the problems associated with using neural networks is the selection of the size of the

network for a given classification problem.

The neural network classifier is built by posing the task as a function interpolation or approximation

problem. The function atimation approach is therefore the appropriate framework to analyse

neural network learning where the task is to estimate or approximate the underlying function from

given data. We have adopted this approach to solve the problem of sequential learning with neural

networks and derived a network that modifies its architecture dynamically [3], This network

resemqu the form of the resource allocating network (RAN) [5] and is also similar to the restricted

Coulomb energy (RCE) model of classification

The architecturally dynamic network presented here is a Gaussian radial basis function (GaRBF)

network that begins with no hidden units and grows by adding hidden units based on the novelty

of the present observation. lt learns from each observation sequentially and the estimate of the

underlying mapping is formed such that it attempts to combine the past and present information

optimally. The network was originally formulated for a single output network and used in solving

function approximation and time-series prediction problems [3], [4].

In this paper, we extend the network to include multiple outputs. We also incorporate an efficient

(memory requirements-wise) algorithm based on the Kalman filter to train the growing network.

We apply this network to the problem of pattern classification. Results on the classification of the

Peterson-Barney vowel dataare presented in which the classes overlap considerably. We show that

the dynamic network attains a performance comparable to other reported results with fixed size

networks and nearest neighbour methods.

2. THE ARCHITECTURALLY DYNAMIC NETWORK

The basis for the architecturally dynamic network lies in the function space approach to sequential

learning with neural networks [3], [4] which reduces to the resource allocating network (RAN) [5].

The network presented here extends the network considered in [3], [4], [5] by consisting of multiple

output units and the appropriate modification of the growth criteria. Since each output unit maps

a function, the function space approach can be readily used. The only difference being the basis

functions common to all output mappings
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The network maps an M-dimensional input at 6 RM to an L-dimensional output y e 32". The
network output response to an input pattern is a linear combination of the hidden unit raponses
given by, .

F(x) = Wlflx) (l)

where fix) = [fi(x),. .. ,¢k(x),. ..,¢K9()]T is the vector formed by the responsa of the hidden
units to the input pattern. The W = [wl ,. . . ,wT, . . . ,wzF is the weight matrix of the hidden to
output layer weights or coefficients. Hence, the 1‘ output unit response is given by,

 

K

f:(x) = wit = Z wimnx) (2)
k=1

The k‘h hidden unit response is given by the Gaussian radial basis function (GaRBF),

1
0M“) = “P {—7le - ukil’} (3)

"t

where II], is the unit centre or mean of the Gaussian and tn, is the spread of the neighbourhood or
width of the Gaussian. Platt [5] describes the operation ofa hidden unit asstoring a local region in
the input space — the neighbourhood of u... Hence, the ui. may be viewed as stored patterns. The
weights of the hidden — output layer, coefficients w“ determines the contribution of each hidden
unit to a particular output unit.

The network begins with no hidden units. The observations are in the form (xmyn), where y,.
Is the target output pattern associated with the input pattern x... As observations arereceived
the network grows by storing some of them by adding new hidden units. The decision to store an
observation (x,,,y,,) depends on its novelty, for which the following two conditions must he met:

iier—“nr” > en (4)
en = > 8min (5)

where M.“ is the Lz-norm or Euclidean norm, r,“ 2...," are thresholds, u." is the nearest stored
pattern to )r,l in the input space, uiz.,

u = ar ' - u 6M S “STAIN “xvi It" ( )

and 2,. is the largest error in the output units between the network response and the target,

en:max{en,,...,enl,...,e.u} (7)

where e,| is the output error vector given by,

en = )5. - NM) (3)

The first criterion says that the input must be far away from stored patterns and the second
criterion says that the error in atleast one of the network output units between the response and
the target must be significant. The value emin is chosen to represent the desired accuracy of the

. network at all output units. The distance 6.. represents the scale of resolution in the input space
in which the approximation is_ done. '
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When a new hidden unit (K“‘) is added to the network, the parameters or weights associated with

this unit are assigned as follows:

[err-ukurlr = en (9)
uK = x. (10)
ox = I:||x,. — u...” (11)

where K is an overlap factor which determines the overlap of the responses of the hidden units in the

input space. The value for the width 0K is based on a nearest neighbour heuristic. The addition

of a GaRBF hidden unit centred on an observation is similar in spirit to the nearat neighbour and

Parzen window methods [7] in which all input observations are retained.

Thenetwork begins with (n = 6...“, the largest scale of interest, typically the size of the entire

input space of non-zero probability density The distance (a is decayed exponentially as,

(n = max[(mu7", (min) (12)

where 0 < '7 < 1 is a decay constant. The value for 6.. is decayed until it reaches (min. The lower

bound ensures that the number of hidden units allocated are also bounded above.

The growth pattern of the RAN and the dynamic architecture network depends critically on 7

which influences the rate of growth and on cmzn which determines the final size of the network

together with em]... These parameters have to be chosen a priori and hence the performance of the

network depends crucially on their appropriate selection. The exponential decaying of the distance

criterion allows fewer basis functions with large widths (smoother basis functions) initially and with

increasing number of observations, more basis functions with smaller widths are allocated to fine

tune the approximation.

When the observation (me ) does not satisfy the novelty criteria, the existing (K — 1) hidden unit

network parameters c = [wl ,. . .,w[,uf,. . . .u§_,,o.,.. . ,aK_]]T, are adapted by the extended

Kalman filter (EKF) algorithm. An alternative to the EKF would be to use theLMS algorithm

as suggested by Platt [5] for increased computational speed. However, RAN with EKF exhibits

fast convergence and also results in a network with smaller number of hidden units [3], In the
next section, we shall develop an algorithm that compromises between using EKF algorithm to

adapt the parameters to achieve fast convergence at the expense of added memory requirements

and computational complexity, and using the LMS algorithm for fast computation at the expense

of slow convergence.

3. THE ADAPTATION ALGORITHM

The EKF algorithm requires an additional memory for the error covariance matrix (square symmet-

ric) with storage requirements of I5P(P + 1) where P is the number of parameters being adapted.

If we choose to adapt all the parameters c, then P = K(L + M + 1).

Given a parameter vector w, the EKF algorithm obtains the posterior estimate W”) from its prior

estimate WW") and its prior error covariance estimate P.._1 as follows (see [8]):

WW = win") + e..k,I (13)
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where e,l = y,l — f(x..) is the prediction error and k,. is the Kalman ga.in vector given by,

k. = [Rn + $54.14" PM». (14)

where a,. = wa(xn) is the gradient vector and 11,. is the variance of the measurement noise. The

error covariance matrix is updated by,

P" = [I- k,.n3]P..-1 (15)

i being the identity matrix. The rapid convergence ofthe EKF algorithm may prevent the model
from adapting to future data‘ To avoid this problem, a random walk model is often used [9] where
the covariance matrix update becomes

12,, = [I — knaI] P..-) + 001 (15)

The parameter 00 is a scalar which determines the allowed random step in the direction of the
gradient vector.

Since the hidden to output layer weights w, are independent of each other, the estimate error
covariance matrix will contain a lot of 0 valua and is a sparse matrix. Further, since the hidden
unit responses are common to all the weight vectors W], the error covariance matrix of the estimates

for w, will be the same for all I, Hence by choosing to adapt the weight matrix W instread of the
entire set of parameters, we can reduce this memory requirement to K x K even though P = KL.

Applying the EKF algorithm to the network in which we adapt only the hidden to output layer
weights. provides the following adaptation algorithm:

WW = W("‘”+enk: (17)

k. = [Rn+¢>IP.-m]"P.-1e.. (18)
PH = [I-k.¢Z]P.._.+QoI (19)

where 0,. = [(fiflX"), . . . ,c231.-(x,.)]T is the hidden unit response vector to the input x“.

The error covariance matrix P,I is a If x If positive definite symmetric matrix, where K is the
number of hidden units in the network. Whenever a new hidden unit is allocated the dimensionality

of F’" increases by 1 and hence, the new rows and columns must be initialised. Since I”,l is an
estimate of the error covariance of the parameters. we choose,

1",. = ( 3"“ Pg ) (2a)

where Pu is an estimate of the uncertainty in the initial values assigned to the weights, which in

our case is also the variance of the observation y".
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4. SPEECH PATTERN CLASSIFICATION

The speech pattern dassification task we have chosen here is the benchmark problem of classifying
Peterson - Barney vowel data which contain the first and second formant frequencies for 10 spoken
vowel classes, spoken by male, female and child American speakers. The training and test data
consists of 1000 and 500 observations respectively, the tut data being independent of the training
data. This data contains classes which overlap considerably and hence is a difficult classification
problem. The training data is presented to the dynamic architecture network one by one and only
once. Figure 1 shows the growth of the network and the classification error percentage on the tat
and training data. The curve for the training data represents the classification error on only those
observations that have already been presented for training.
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Figure 1: The growth pattern and the classification error percentage with increasing number of
observations.

The final network had 85 hidden units to achieve a performance with around 24% classification
error on the test data. Figure I shows that the error tailing off after the network had used 350
observations for learning when the number of hidden units in the network was only around 55. This
demonstrates the redundancy of the hidden units prevalent in the final network and the need for
modification ofthe growth criterion for classification problems which in the network is based strictly
on interpolation errors rather than on classification errors. The evolution of the class boundaries
with increasing number ofhidden units and hence with increasing number ofobservations are shown
in figure 2. The ohsenations used in learning the the boundaries are also shown. lt illustrates the
essential feature of the dynamic network which attempts to use the present data be consistent with
that of the past from which it already has learned a representation.
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Figure 2: Evolution of the class boundary of the dynamic architecture network with increasing
number of hidden units K after seeing N observations. (a) K=10, N=87 (b) K=20, N=l57 (c)
K=50‘ N=298 (d) K=854 N=1000I
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We also tested Platt’s RAN on the above data with eachobservation presented only once. At the

end of training, the RAN had formed 157 hidden units but its classification error percentage on
the training data was around 36% and on the test data was 39%. This clearly demonstrate the
superior perfonnanoe of the dynamic architecture network over the RAN which was also observed
in timeseries prediction results [4].

The 24% classification error in the network is comparable to the simple and more complex methods
reported on the same but reduced size dataset. The data set used in our experiments contained
child speakers which adds to the difficulty of the classification problem than those in It is also
important to note that the results reported in [l] and [10] are obtained by using the data for many
iterations or using them cit-bloc. Reported results include 22% error with a Gaussian RBF type
network by Bridle [10], in which a softmax function is used at the output and the parameters are
estimated by minimising an entropy measure. We give some of the results reported by Lowe [l]
and the results of our network in table 1. '

Classification Method % Error (Train data) % Error (Test data)

Nearest Neighbour
Gaussian RBF (36 hidden)
Thin plate spline REP (32 hidden)
Dynamic network (85 hidden) 1

 

Table 1: Results from standard classifiers, fixed size networks (from [1]) and the dynamic architec-
ture network “Training and test data set was more than twice that used for other methods and
the observations were also presented only once in the sequential learning procedure) DCM stands
for distance to class mean.

Generally, the nearest neighbour methods give good classification performance. Their weakness lies
in the run time required to find the best class for the given input pattern and the need to store the
entire set of data. The fixed size REF networks store only a sub-set of the input patterns, learning

the input to output mapping, and its run time to find the best class is also faster. However, they
require the entire data set to be available for training. The dynamic network goes one step further
by training sequentially on each observation (seen only once) and chooses to store an input pattern
if it is considered novel.

The architecturally dynamic network can be viewed as a combination of the nearest neighbour and

the function interpolation methods. It reaches a size that is smaller than what would be required
in the nearest neighbour method but is larger than the minimal network that would be arrived at
if the data were used en-bloc. However. finding this minimal network with fixed size networks in

practice requires many network configurations to be experimented and can be quite cumbersome.

The network presented here provides a trade-off by alleviating this difficulty while achieving the
same level of performance with a larger number of units.
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5. CONCLUSION

We have presented an architecturally dynamic network for solving interpolation and pattern classi-
fication problem. A fast and efficient Kalman filter based adaptation algorithm has been presented
for this network. The network learns sequentially and sees an observation only once. The classifi-
cation performance of this network was comparable to other block estimation based results. The
advantages then are that learning is fast, memory requirements in terms of data storage are minimal
and more importantly the problem of choosing the size of the network a priori is eliminated. For
the network to be more efficient, pruning schemes must be introduced to remove redundant basis
functions (hidden units) whose contribution is minimal.
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