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Periodic modulation of a nonlinear material paranet an efficient mechanism of the
explosive instability in acoustics. In contrastthe conventional absolute parametric
instability having the exponential development sciEn the explosive instability
manifests as a singularity in the wave amplitudeashe finite propagation time. Our
case study concerns the explosive instability ofgmetoelasic Lamb waves in a
magnetic material subject to the electromagneticutagion of the third order elastic
modulus. The instability occurs due to the effddhe three-phonon coupling by means
of electromagnetic field. In a general many-bodghpem, in particular in the problem
of ultra cold atoms, it is known that particleseiratction is enhanced by the Feshbach
resonance. In solid-state acoustics, the resonahEeshbach type corresponds to the
nonlinear interaction of traveling elastic waveshwelectromagnetic pumping via an
acoustic mode of discrete spectrum. This mode urtder appropriate resonant
conditions provides a positive feedback of the dliamg waves on the pumping. The
effect is predicted in an antiferromagnetic matesigh the "easy plane" type magnetic
anisotropy. In this material, the magnetoelastieraction induces the giant acoustic
nonlinearity that can be controlled by the extermagnetic field. We analyze the
threshold conditions for the explosive instabiltyd numerically simulate the explosive
scenario of wave amplification over the threshdidis shown that the explosive
scenario can occur with a very low level of theideat Lamb wave amplitude
comparable to the spontaneous acoustic noise. Tdmsidered mechanism of
nonlinearity modulation is extendable onto systeshglifferent physical nature and
potentially applicable in acousto-electronics, &l®c and hydrodynamics and in
microsystems designing.
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1. Introduction

Instabilities in dynamic systems attract the attenof researchers due significant their positive
and negative impacts. On one hand, developmentnsthbilities efficiently generates noise,
vibrations, etc., finally resulting in fatigue, weaamage of components and structures, as well as
poor or unacceptable for the human society expioitaconditions. On the other hand, instabilities
help convert external pumping energy into mecharecargy or produce giant amplification of
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useful signals. These factors motivate our intetesestablishing the conditions of the huge
amplitude growth effect and to finding exemplar tegss in which these conditions can be
theoretically predicted and experimentally observed

There are at least two confirmed types of behaviharacterized by a theoretically infinite
amplitude growth: exponential and explosive. Theamential instability appears when a linear
parameter such as stiffness in oscillators or saghokity in acoustics is efficiently modulated by
another physical process. This effect is usualliedgparametric amplification and is typical for a
wide range of situations ranging from the classipahdulum with a variable string length to
stimulated processes in laser physics [1], lighttecing [2,3], acoustics [4], etc.

Our interest here is to another type of growingahdities having the explosive behaviour. In
this case, an external process modulates not tiearliparameter but the quadratic nonlinear
coefficient. The difference between the "usual"apaetric instability having the exponential
character and the explosive effect of nonlineantpdulation can be understood using the
Hamiltonian formalism. The classical Hamiltonianntans terms with two amplitudes in the
former case and with three amplitudes in the lattere. Application of the appropriate resonance
conditions produces terms containing a combinatiovo or three complex conjugate amplitudes,
respectively. In a quantum counterpart of suchnégraction between two or three phonons, two or
three creation operators appear. The presencesdhitd creation operator explains an additional
contribution to the amplification process and resuh an explosive amplitude growth when
theoretically infinite values are obtained at atérmoment of time, as it is for the mathematical
singularity.

The shear mode that considerably alters the systémhaviour pays a contribution that
mathematically resembles the Feshbach resonangesidpporting the bound molecular states in
the quantum system of ultracold atoms. This isrd@son for calling the effect the Feshbach-type
resonance.

2. Equations for the explosive instability in antiferromagnetics

The objective of this section is to derive equaialescribing the explosive instability in a
particular system where the three-phonon interactappears. The system represents an
antiferromagnetic plate in which a Lamb wave pr@teg in the presence of pumping by means of
an alternative magnetic field. In addition, a sh&anding wave is to be generated. In this sitnatio
another Lamb wave with the opposite propagatioection is spontaneously excited. The three
phonons necessary for the explosive instabilityegation are coming from the two Lamb waves
and from the shear resonance mode. The magneti@ipgnmaction modulates the quadratic
nonlinear parameter and actually provides energthi®explosive amplitude growth.

As a model medium we choose an antiferromagneystalrwith the magnetic anisotropy of the
"easy plane" type belonging to symmetry grdd}y (e.g.a-Fe&Os or FeBQ). The crystal has a
shape of a plate cut in the basal plane normaheoctystallographic axis{d|z (see Fig. 1). We
suppose that the plate is placed in a constant etiagield H parallel toy-axis and in a transversal
RF magnetic fielcﬁp(t) parallel to the binary axis 44| x (see Fig. 1). The instability effect is

produced by the interaction of the fundamental sheade with the in-plane displacements parallel
to the binary axig and two asymmetric Lamb waves with polarizatiommalrto the plane and with
the wave vectorsktparallel and antiparallel to theaxis.

It is possible to show [7] that the potential eryedgnsity in the material has the form:

F=2C,u;,+W h (U, (1)

wherep is density of the crystal.s is the shear elastic modulus atfd is the amplitude of
interaction caused by modulation of the nonlindastec parameteC555( FI):
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Figure 1: System’s geometry. Wave displacemeptand U_, for the Lamb waves with wave vectdrs

and -k are shown as well as wave displacentégtfor the shear mode. Magnetic fielts and ﬁp (t) are
also plotted.

19

Wo=
30H,

Coss(H). )

An explicit expression foW, applicable to the antiferromagnet Bf, symmetry with the easy
plane type magnetic anisotropy in transversal dtiere magnetic field is derived in [8]. In the
particular case when the only nonzero strain corapbisU,,, ¥, equals to
% 1 H+H, _

WY =-16C =,
p 44 £ (a)soly)Z

3)

where

::1_ |_|DHEHmS (4)
21
2(H +Hp )(w,1y)

In Eqgs. (3)-(4),6=2B14C44 is the spontaneous magnetostrictive str8in,is a magnetoelastic
constant,Hg, Hp and Hys are exchange, Dzyaloshinsky and magnetoelastiectefé fields,
respectivelywg is the frequency of antiferromagnetic resonapce the magneto-mechanical ratio,
{is the magnetoelastic coupling coefficient. Theatdlebf this derivation can be found in [7].

In Eqg. (1), the pumping magnetic field that modidatiee quadratic nonlinearity coefficient is
chosen as

hy(t) = he* + cc, 5)

whereay is pumping frequencyy, is the magnetic field amplitude.
In order to show that the explosive instability eprs in such a system, it is sufficient to assume
that the displacement field has the following stuve:

u =(De”" + D e““‘)co{ll—T zj (6)
u, :(Ae“kx+ Bé“) & sinU—T %+ cl. (7)

Here the contributionu, corresponds to the shear resonance mode withréla@encyQ and
amplitudeD, while u-component describes the Lamb waves with the carrelmt wave numbeds
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and frequencyawx. The Lamb waves have approximately vertical disgrl@ent since they are
considered in the short-wave approximation in otdemake use of the fact that wave interactions
enhance when the wavelength decreases. Ampli#udé the forward wave is coming from the
excitation signal while the backward wave of theplmdeB is not deliberately excited but appears
spontaneously as it will be demonstrated. In E8)s(1),! is the plate thickness.

The equations of motion corresponding to the pakahergy density Eq.(1) have the form:

0°u 0%u, 3 d°u,  du
*=Cp—+=¥ h(Hu o —L
FO e AP ( 07 aﬁxj

Yo, (8)

d°u 0%u, 0d% 3 9° 92
p 3 :C44( o+ Xj+§wphp(t)uxz( uZ+ uX)J (9)

ot* x> 00z X 0Dx

Equations for amplitudes are obtained from Esg(98)in the following way. First, Eq (8) is
multiplied by cos(7z /1), Eq. (9) is multiplied bysin(7zz/1), and both equations are integrated

over the plate thickness i.e. fO z< |. Then two resulting equations are obtained, infictv the
explicit forms Eq. (6)-(7) have to be substitutddhe substitution produces equations for slow
amplitudesA, B, andD together with their double derivatives. Each skwplitude is multiplied by
a rapidly evolving factor containing a combinatiof frequenciesw,,«) , and Q . In these

equations, a number of terms can be neglectedlyfistnce amplitude#d, B, andD evolve slowly
in comparison to fast terms with frequencigs «p, andQ, their double derivatives can be omitted.
Secondly, only resonant terms with

w, =20, -Q=0. (10)

should be retained. Indeed, as we will show inrteet section, such resonance mathematically
guaranties an explosive growth of all amplitudesng&quently, in comparison with the rapidly
growing resonant terms, all other equation ternspaasible for slower processes that do not have
an explosive character can be neglected.

The eventual result for the slowly varying amplgsds presented in the form of the following
equations:

A Pisa=——"w hieD B dear (11)
ot ox ol P
B_\B.5p=—" W nKD AdeN (12)
ot ox 2 I
oD [ 15 . i(wp~2-Q)t
—+0,(D-D)=———W h K= ABe* ™, 13
o H(D D) =iy L{ (13)

where damping factorg, and o, have been additionally introduced. Heres the group velocity
of the Lamb waves.

A numerical solution to Egs. (11)-(13) is discussethe next section.

Here it is appropriate to mention that an attenmgptbtild up the classical Hamiltonian

corresponding to Egs. (11)-(13) will produce a tewntainingh, e ( d+ d) ab+ cc wherea,

b, andd are the canonical variables corresponding to dog@sA, B, andD, respectively. The

combinationd a b has the quantum counterpart in the form of pradonasf three phonon creation
operators. This fact indirectly explains the explegrowth effect.
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3. Numerical solutions with the explosive instability

For the numerical analysis, it is convenient torieneqgs. (11)-(13) in the following form:

aA aA . * *
—+—+A=-iPB (D, + D) , 14
at ox (D;+D) (14)
oB" 0B ..
——-—+9JB =i®A(D,+ D), 15
at  ax (D+ D) (19)
oD 1% .
—+0D=-iu=|dxA B . 16
1o ﬂL! (16)

Here timet is measured in microsecondsandL are normalized on the group velocitynew
amplitudesA andB are obtained by adding a factds, amplitudeD is multiplied by7te/2 (¢ is the
spontaneous magnetostrictive  strain  introduced @hov detuning from resonance
Aw, = w, - 2w, —Q is neglected, the interaction amplituies defined as

P=—7W h, (17)

and a new parameter = CDQ/(SazK) is introduced. Further, variabl2 present in Egs. (14)-(17)

is an additional component of the total shear madeplitude D+Dy, where parameteDg
corresponds to a continuous excitation of the raso@ mode by an external alternative force.
Basically, in experiments such force is create@bydditional alternative magnetic field applied at
the eigenfrequency of the mode [7,9].

Equations (14)-(16) are to be completed by the bdannand initial conditions:

A, =AY, A, =0, (18)
B|x:L = O' Blt:o = 0’ (19)
Dl = Ds. (20)

whereAy(t) is the amplitude of an incident wave at the entears® of the active zone.

Equations (14) and (15) describe the parametris@ltanjugation of travelling waves through
the presence of complex conjugate amplitudes irrigig-hand sides. These conjugate amplitudes
contribute into Egs. (14) and (15) together with ghhear excitatio® and variablgd corresponding
to the pumping magnetic field (see Eqg. (17)). A¢ game time, Eq. (16) introduces a feedback
effect into the system, when the signal (travellibgmb waves) impacts the pumping (shear
resonance). In the absence of the feedback effeet, amplitudes of Lamb waves would
exponentially increase [10,11] once the threshdlgavametric instability is reached. As we will
show here, the addition of feedback in Eq. (16)saterably modifies the behaviour of the system.
Due to the feedback, the exponential amplificatoanario is followed by the explosive instability.

Accepting the following typical values of physiqarameters of the problera/(27)=20 MHz,
Q/(27)=1 MHz, acoustical quality factor of 0/=4-10 cm/s,L= 4 cm,H=0.5 kOe h,=40 Oe, and
magnetic parameters for the antiferromagnetic atyaken from [7,12], we obtain the normalized
parametersy=6-10? (us)*, %=3-10° (us)*, L=10 s, ®=10 s)*, 1=6.25-1F (us)* in Egs. (14)-
(16). In Fig. 2 belowt, x, andL are measured in microseconds.

In the boundary condition Eg. (18), an explicitnfofor Ag(t) should be set. In fact, in the
situation of the giant amplification considered ené¢ine exact shape of the "starter” signal is not
essential. We choose a Gaussian pulse

ICSV24, London, 23-27 July 2017 5



ICSV24, London, 23-27 July 2017

A (t)= %exp[—%} : (21)

of durationw=0.5us centred aty=2 ps. Two remaining parametes; andDy, determining the
boundary conditions Egs. (18)-(20) are already mtimad on the spontaneous magnetostrictive
straine~10°. ThereforeA,=107 taken here as an example corresponds to a loim strabout 10.
The shear mode amplitud®, plays the pole of a pumping; a chosen valye5-10° actually
means that the considered pumping amplitude i®daiv (about 5-10) and can be increased at
least by a factor of $AL0°. The normalized amplitudes can reach values oroofl 1G (physical
strains about I8); at higher strains the crystal fails.
100 7 A=B A=B

100 7 A=B a

10" 107

10" 10"

10° 10°

10 15 20 25 t 30 5 10 15 20 25 30 10 15 20 25t 30

Figure 2: Time dependencies for the amplituteB at the centre of the plate i.e xal/2 showing
explosive (black curves) and exponential (gray es)ywnstabilities. The former case occurs in tres@nce
of the Feshbach resonance i.e. when the additiesahant shear mode pumping is applied while tierla
situation corresponds to the classical parametteraction (no additional shear action, magnetimping
only). The vertical axis is shown in the logaritierscale. Sets (a)-(c) illustrate the process & dint values
of parameter®), Do, andA,, respectively. The baseline curves (thick lines)the same in all the three sets.

Figure 2 demonstrates the existence of the exm@osistability at a given set of parameters
(thick black line in each set (a)-(c)). At the begng of the amplification process i.e. for
10 us<t<20 s in our example, the amplitudésandB grow exponentially similarly to the case of
the classical parametric interaction = &, + @, (thick gray line), when shear resonant feedback is

absent i.eD is kept constantD=D,, instead of considering the time-dependent ewatubf D
according to Eq. (16). The shear pumping (Feshbgmh-resonance) starts playing its role at
t~22.5us when a singularity develops almost instantly. Thenb wave amplitudes immediately
reach values of Fa10° in our example shown in Fig. 2 and then infinitghpw. It was also found
that at large amplitudes=B.

The three sets (a)-(c) in Fig. 2 illustrate thelesive instability dependencies on the system's
parameters. In the considered example the "explbstways occurs, but its time depends &n
(set a),Do (set b), andd, (set ¢). If no acoustic attenuationin the system is present, the explosion
appears s earlier than in the baseline case (thick lina#) the general behaviour remains
unchanged. Doubling the initial shear pumping atagé D, (set b) results in a considerable
enhancement of the "explosive" properties; thealnfity appearance time becomes twice shorter.
Finally (set c), the initial Lamb wave amplitudewlered in 10 times delays the explosion
development but, again, does not alter the behawibthe system.

Generally, Fig. 2 illustrates the efficiency of tReshbach-type resonance for enhancing the
instability. Indeed, when the singularity has depeld, the amplification coefficient increase due to
the nonlinear feedback is theoretically infinitedam practice, is limited by the ultimate strength
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the material or high-order nonlinear effects sushpamping exhaustion, nonlinear frequency shift
etc. Those effects are not considered here.

4. Conclusions

The analysis and numerical examples we presentedaged to systems with two-and three-
phonon interactions. Two-phonon processes deschbegl correspond to the classical parametric

interaction of the kindw, =, +@. , where the pumping wave of frequency exponentially

amplifies signals at frequencieg and wy. In the considered case, Lamb waves of frequenaies
and wy propagate in a plate made of antiferromagneticeri@tin which a transverse alternative
magnetic field of frequencyy, is applied. The situation changes considerablgnifadditional
pumping channel is introduced in the form of a shesonant mode of frequendQ. The
corresponding three-phonon process =, +w , +Q generates instabilites of much more

"powerful” (explosive) type when time dependenaésignal amplitudes behave as a mathematical
singularity. This offers an opportunity to convéreé magnetic energy into mechanical energy in an
extremely efficient manner.

An antiferromagnetic crystal excited in a way ddsemt here is only an example of a situation in
which the explosive instability effect based on tieee-phonon interaction is expected. The
considered nonlinearity modulation mechanism issiids to extend on systems of different
physical nature and to apply in acousto-electrgniekectro- and hydrodynamics and in
microsystems designing.
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