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Introduction

A narrow-band acoustic wave field can be described either in terms of a

directional spectrum of plane-wave components or in terms of the spatial

distribution of the field over a reference plane. The function of an electroni-

Cally-scanned receiver is to use an array of transducers to acquire information

about the spatial field distribution over an 'aperture' plane and to convert

this into information about the supposedly unknown directional spectrum of the

incoming wave field. It is well-known that the aperture distribution function

and the directional spectrum function can be defined in such a way that the

relationship between them appears as a Fourier transformation. Because the

observed part of the spatial field is limited to the physical size of the array

aperture, and because the directional spectrum is limited to the range of real

angles. both functions can be approximated byrfinite sets of discrete samples.

It turns out that, for a line array for example, all the information that is

practically available about the unknown directional spectrum'is contained in

n samples of the aperture field where n is the number of half-wavelengths in

the length of the aperture. A scanning computer is then able to use the informa-

tion contained in these samples to generate not more than n samples of the

directional spectrum. Even if the particular soanning system is designed to

produce a continuous sweep of the directional spectrum it still remains true

that the fineness of detail of the reconstructed image can never exceed that

implied by the available number of samples.

The samples of the aperture field are complex-because they have to include

both amplitude and phase information about the time-alternating field and the

resulting spectral samples are also complex. But. for all practical purposes,

the phase information relating to the spectrum is irrelevant; what is needed is

the amplitude information only. It would obviously be a good idea therefore to

seek some way of transforming the n complex samples of the aperture field into

an real samples of the directional spectrum. at half the original spacing. thus

doubling the amount of detail that can be reproduced. A hint as to how this

might be achieved is provided by the Wiener-Khintchine theorem, which relates

the autoccrrelation of one of the functions forming a Fourier pair to the

squared modulus of the other function of the pair. This suggests that what is

wanted is a mthod of forming the autocorrelation of the sampled aperture

function and then to apply a Fourier transformation to this in order to produce

real samples of the directional power spectrum. The desire to halve the spacing

of these directional samples means however that the effective aperture of the

spatial autocorrelation must be twice the length of the physical array. This

is not practicable. It will be shown however that a multiplicative scanning

process, involving only a single multiplication followed by time-averaging,

can sometimes produce results approximating to those expected from true spatial

autocorrelation and can therefore lead to spectral resolutions significantly

better than those obtainable with conventional additive scanning processes.
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Spatial autocorrelation

The spatial correlation problem is made more complicated by the fact that the

functions on both sides of the Fourier transformation are complex. This is dealt

with by splitting the aperture field arbitrarily into two components which are

in time-quadrature with each other and then treating each separately.

The amplitude IF] and phase H of a sinusoidal time-waveform can be repre-

sented by thecomplex number _P= [PI exp(j¢) which can be written in the

alternative form P: P}; ~jPB . The time-waveform is then PA cos mt+PB sin mt .

The aperture field distribution P(ky). and the directional spectrum Q(s)

form a Fourier transform pair

PA (ky) -(—-—> QA(s)

PB (ky) 46—h QB(s)

Now apply the Wiener-Khintchine theorem to each relationship separately :

[autocorrelation of PA(ky)] '6‘“- IQA(s)|:

[autocorrelation of PB(ky)] 4—» |QB(s)l

Therefore [sum of both autoccrrelations] d—h- |(;z.t\(s)|z + [QB(s)|2

Since (211(5). and (23(5) represent two fields which are in time-quadrature then

the sum of their squared moduli must equal the squared modulus of their sum;

i'e' 'IQA(s)l2+ IQB(s)|a= [Mair

and therefore
' 8

[sum .of autocorrelations of PA(ky) and PB(ky)] 4—:- IQ(s)|

So the required process must carry out quadrature sampling of the aperture field,

form the autocorrelation.of each set of samples, perform a Fourier transforma-

tion on each separately and finally add the results together.

In any practical system the whole of the function P(ky) cannot be reached;

all that is available is a set of samples of P(ky) 'taken within the limits

y = 1%!) of the aperture. This means that the samples are not really of P(ky)

itself but of the product P(ky) T(ky) where T(ky) is equal to unit for

values of ky lying within the aperture but equal to zero for all Iky > $114 .

So the Fourier transform of interest is actually : P(ky)T(ky) 4’- Q(s) c U(s)

q where '1‘(ky) ** 11(5)

The asterisk denotes convolution.

The reconstructed spectrum cannot ever be Q(s) but is an approximation to"

the convolution of Q(s) with the'aperture sampling function ‘1'(ky). Another

way of saying exactly the same thing is that Q(s) has to be soanned by the

beam pattern U(s) appropriate to that particular aperture. For an aperture

length L and for uniform weighting of the samples.

11(5) = (sin 10/): where x = adds .
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To simplify the discussion it has been assumed that the aperture has only
one dimension, so that the sampling device is just a uniformly-spaced line array
of transducers. It will be understood that. once the principles have been estab—

lished, any conclusions reached can be extended to cases where the aperture is
two-dimensional and also where the weighting of the samples is not necessarily
uniform.

The autocorrela’cion process described above can only be applied to the
limited number of aperture samples that are available; i.e. to Ithe product
P(ky)T(ky); .and this leads to the power spectrum |Q(s) t U(s)| .

But this is exactly the same result as could have been obtained much more
simply by carrying out an 'additive' seaming process. followed by square-law
detection. At 'first sight it might appear that nothing has been gained and in
fact this is true if it is not possible to place any restrictions on the
'unknown' directional spectrum of the waves approaching the receiver.

Stationary directional spectrum

Suppose however that the field is such that the mean amplitude of each

sample of the directional spectrum remains constant, or at least changes only
very slowly. while the phases of the samples fluctuate randomly and independ-
ently of each other. This is the kind of thing that happens in radio astronomy.
for example, and conditions can be imagined under whichit might also be expec-
ted to apply to some extent in underwater sonar applications. The intention now
is to see whether, under such conditions, correlation techniques might possibly
lead to effective apertures greater than that of the actual array and. in

particular. might approach the ideal case of the doubled dimensions required to
provide the 2n samples referred to in the Introduction.

Time-averaging and spatial-averagipg

Consider the product of the outputs of two array elements, at positions
y=y1 and y=y2, respectively, assuming for the moment that the directional
spectrum of the field consists only of two components Q1(s) and 02(5) in
directions 51 and 52. Q: iQIeprfi).

The time-waveforms at elements 1 and 2 are. respectively :

IQ1lcos(wt +¢.l - ky.‘ 51) + |Q2|cos(wt +¢2-- lay.1 32)

|Q1|cos(wt +¢1 - ky2 s1) + |Q2|cos(<ut +¢2— kyz s2)

Each of these haslto be represented by two quadrature samples. one giving the
coefficient of cosmt and the other that of sinmt. For example, the cosine
samples are :’

|Q1lcos(¢1-ky1 51) + |Q2|cos(¢2-ky1 52)

and [Q1lcos(¢1-ky2 51) + [Q2|cos(¢2-ky2 52)

Multiplication and time-averaging over one period of t (i.e. lowpess
filtering to remove the alternating carrier). gives the following four terms :
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{IQ-[laws kS1(3’2-y1)]

+%[lQ2l2cos ksztya- y1)]

+§LHQ1H92|C°5{(¢2'¢1) + “1 (ya-Y1) + ky1(s1 - 523]

+%[lQ1]|Q2lcos{(¢2-¢1)- ks1 (ya-5'1) + hy2(sq- San]
._...__(4)

The following conclusions can be drawn from this :

‘I. the useful information is contained in the first two terms only.

while the remaining terms represent 'noise',

2. the useful information depends only on the spacing (y2- 3(1) of

the‘elements and not on their absolute position,

3. the unwanted terms are functions of the absolute positions of

the elements and also of the phase difference (fie-951) between
the two spectral components. '

A true spatial autocorrelation process requires the summation of products of

pairs of aperture samples, at fixed spacings, taken in all possible positions.

When this is done the unwanted components will have various phase angles and will

tend to average out. So, although all the available information about the spectrum

is contained in the outputs from a single pair of elements at each spacing, the

process has to be repeated for all other positions in order to remove the cross-

product terms.

But inthe special case of a stationary-amplitude spectrum of the kind des-

cribed above the phase difference between pairs of samples varies randomly with

time, so the unwanted 'noise' can now be removed simply by time-averaging the

products of single pairs of elements.

Although this statement is based on the assumption that the spectrum contains

only two components at 5:51 and 5:52 , it is evident that the same argument can

also be used for larger numbers of spectral components.

Another useful fact is that, since the phase angle of each spectral component

of this particular kind of field is assumed to vary with time, the mean-square

values of the two quadrature components QA(s) and QB(s) will be the same

W,s l1 177%s I‘= arma F
So, in this case, there is no need for quadrature sampling; the multiplication

processes can be carried out directly on the signal time—waveforms.

'l‘ime- averaged-product (TAP) array

To simplify the explanation that follows, consider the particular example of

a 6-element line array with the method of processing shown schematically in fig.1.

From eqn.(‘l) and the' discussion that follows it each spectral component such
as Q(s) will produce an output proportional to

[file [1+2cos 2x+2 cos tm+2 cos 6x+2 cos 8x+2 cos 10x]

where x = iks d d is spacing of adjacent elements.
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or lQ(s)I U1 (6)

where 01(5) denotes the expression in the square brackets.

Evidently U1(s) represents the directional response of the system.

If electronic scanning is performed, by introducing an appropriate set of
time—varying phase-shifts at the point indicated b the: dashed lines in fig.1,
the effect will be to produce the convolution of IQ s l with U (5)3. So the
result is ]Q(s)lan- U1(s) instead of the expression lQ(s) ’ UZs)| which would
have resulted from a simple additive seaming process, followed by square-law
detection.

The important point is that whereas U(s) is derived from the length of the
physical 6-element array, U1(s) is equivalent to the directional pattern of an
11-element additive array at the same spacing. So the scanned TAP system has
effectively produced 2n—1 real samples 'of the directional spectrum instead of
n complex ones. ‘

Multiplicative arrgl

This has been'adopted as a convenient name for the scheme shown in fig.2.
The array 'is split into two parts, the signal waveforms are directly added
together within the gronps of elements and the two total time-waveforms are then
multiplied together and time-averaged. The output for a single spectral component
Q(s) is proportional to

m2 (M ) cos 5x

which can also be written as

(cos 2x+2 cos l+x+3 cos'6x+2 cos 8x+cos 10x)

This is again equivalent to the directional response of an 11-element additive
array but with'the following numerical weighting factors applied to the outputs
of the respective elements :

"1.2.3.2.1.0.1.2,3.2.1

Electronic scanning can be performed by introducing phase-shifts at the point
indicazted by the dashed line in fig.2. The result is to produce the convolution
lesll o U (s) where, apart from a numerical factor, U(s) is the expression in
the bracke a.

Discussion

. The directional patterns for 111(5) and U2(s) are plotted in figs.1(a) and
2(a). The non-uniform weighting in the latter case is responsible for the rela-
tively large side-lobes adjacent to the main lobe. It is of interest to see
whether this could be corrected to some extent by deliberately weighting the
outputs from the array elements before signal-processing is carried out. A
general answer canbe obtained by considering a hypothetical case of multiplica—
tive processing applied to a uniform, continuous aperture of length IL, split into
equal parts. Defining the variable in the spectrum domain as_ 2

~ sin x
x1 = Elf-3 the directional function appears as ( X1 1) cos 2x1
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Treating this expression as if it were the response of an additive system, the

aperture weighting of the equivalent array must be represented by its Fourier

transform. The transform of - sin x1a

( )

is a triangular pulse while that of cos 2x1 is a pair of impulse functions. So

the transform of the product is the convolution, consisting of a pair of tri-

angular pulses.

It will be noted that the 11-element discrete equivalent array already

obtained for the case of the 6-element physical array is consistent with this

result; it corresponds to a sampled version of the two triangular pulses.

 

3‘1

So the aim of any compensating weighting should be to replace the two

triangular distributions by ones that are more nearly uniform; i.e. by recte

angular pulses. But to do this it would be necessary to give the product of the

responses of the two portions of the aperture a (sinx/'x) form, thus dam ing

that the response of each part alone should be proportional to (sin:</ x) .

This is not practicable but the analysis does indicate that the thing to do is

to depart from the idea of splitting the aperture into equal parts; in fact if

we go to the opposite extreme and reduce one part to a single small element.

the directional function for the other part will tend to (sin 2x1/2x1), giving

an approximate directional function for the multiplicative array of '

 

sin 2x sin fix
( ) cos 2x = ( 1)

2x1 1 5x1

This is the response of an equivalent 'additive' aperture of length 21; i.e.

twice the length of the physical aperture.

Fig 3 shows this scheme applied to the example of a 6-element array. Its

directional function is
sin (2n- 1)x sin 5x1
(m1) “5 6x = (m) °°5 6*
= % (cos 2x+cos ‘+x+ cos 6x+cos 8x+ cos 10x)

corresponding to the response of an 11—element additive array, with the centre

element missing. (see fig.3(a))-

This is practically the same as the result for the TAP system of fig.1 and

it becomes clear that both 'TAP' and 'multiplicative' systems are really vari-

ations on the basic theme of what may be termed correlation scanning. The choice

of equal array sections has the advantage that it maximizes the intrinsic

directivity of each section. thus minimizing the effect of ambient noise in the

medium.

Statiogagy spectrum with time-vagyigg amplitude

It has been shown that correlation scanning can produce useful results but

only if the field has a directional spectrum represented by sources, in fixed

directions, with randomly-varying phases. So far it has been assumed that their

amplitudes remain constant. Take the idea a step further and assume that the

amplitudes of the sources can also fluctuate with time, in other words imagine
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that the field is due to a set of discrete sources which 'scintillate' (to borrow
a term from optics). while maintaining their directional positions.

Much will now depend on the way in which the scanning and time-averaging
processes are carried out. If, for example, the field represents echoes in an
active sonar system the signals will be range-gated so that the spectrum for any
'given range annulus only exists for short intervals, widely separated in time.

This points to the fast that. to obtain the full potential advantage of a
correlation scanning system, integration has to take place over a large number
of successive pings. Experience with a particular 32-element multiplicative
scanning sonar has been based on using the persistence of the display screen to
provide a measure of ping-to-ping integration. Operators in the field have
consistently judged the results to be 'better' when switched to multiplicative
processing rather than the alternative additive processing which is also pro-
vided. The accepted explanation seems to be connected with amplitude scintilla-
tion, and the probability that different spectral components will predominate
at different times within the same range annulus, rather than with true cor-
relation based on the averaging-out of cross-product terms as a result of phase
fluctuations.

Conclusions

It is suggested that study should now be directed to the problem of storage
and integration of the output of correlation scanning systemsover a larger
number of successive pings, using modern circuit technology rather than relying
on the persistence of a display. This should enable a closer approach to be made.
for certain kinds of fields, to the ideal of an effective doubling of the array
aperture. It seems likely that the large adjacent side—lobes in its directional
pattern will set a limit to the performance of the symmetrical multiplicative
system. If this is so it means that the trend should be away from equal array
sections, accepting that the choice ultimately lies between signal-to-noise
ratio and directional resolution.
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fig. 1(a)

fig. 3(a)

 


