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It has been demonstrated that the dynamics of Cosserat continuum (micropolar medium) 

can be simulated as a motion of two rods which elastically or visco-elastically interact 

with each other. The relations between elastic constants of Cosserat medium and pa-

rameters of the rods which has been initially given, have been identified. It is for the 

first time when visco-elastic operator has been introduced into micropolar continuum. 

 Keywords: Cosserat medium, solitary waves, modelling  

 

1. Introduction 

The appearance of the Cosserat continuum model [1] marked the beginning of the transition in 

the theory of continuous medium from the Newtonian mechanics, where the original object is the 

material point, to the Euler mechanics, which has a solid body as the original object. The model of 

Cosserat medium has a wide interest among researchers as the continuum generalization of Euler 

mechanics equations. Insufficient to date practical applicability of the Cosserat model is determined 

by the lack of reliable methods for identifying material constants and the lack of the concept of vis-

cosity account in such a medium. 

In this paper an attempt is made to find a clue how to introduce the viscoelastic operators in 

Cosserat model equation with the help of composite (laminate) visco-elastic rod, identical in their 

dispersion properties to the model of Cosserat medium. 

2. Modeling visco-elastic Cosserat continuum   

In the work [5] it has been shown that if plane shear wave and rotational wave propagate along 

the axis 𝑥1 = 𝑥, they can be described with the system of equations: 

𝜌
𝜕2𝑣

𝜕𝑡2
− (𝜇 + 𝛼)

𝜕2𝑣

𝜕𝑥2
− 2𝛼 

𝜕𝜓

𝜕𝑥
= 0, 

𝐼
𝜕2𝜓

𝜕𝑡2
− (𝛾 + 𝜀)

𝜕2𝜓

𝜕𝑡2
− 2𝛼

𝜕𝑣

𝜕𝑥
+ 4𝛼𝜓 = 0. 

(1) 

Here 𝑣(𝑥, 𝑡), 𝜓(𝑥, 𝑡) - components of displacements and rotation vectors respectively; 𝜌 - densi-

ty of the medium; 𝐼 - constant, which characterizes the inertial properties of the macro volume. It 

equals to the product of the moment of inertia of a particle of the medium about any axis passing 

through its center of gravity and the  number of particles per unit volume; 𝜆, 𝜇 – Lame constants; 𝛼, 

𝛾, 𝛽, 𝜀 – physical modulus of the Cosserat continuum which characterize elastic properties of the 

medium and satisfy the following conditions [2-4]:  

𝛼 ≥ 0, 𝛾 + 𝜀 ≥ 0, 3𝛽 + 2𝛾 ≥ 0, −(𝛾 + 𝜀) ≤ 𝛾 − 𝜀 ≤ (𝛾 + 𝜀).  

The system (8) can be reduced to one equation with respect to shear displacements: 
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2
𝜕2𝑣

𝜕𝑡2
− 2

𝜇

𝜌

𝜕2𝑣

𝜕𝑥2
+

𝐼

2𝛼

𝜕4𝑣

𝜕𝑡4
−

(𝜇 + 𝛼)𝐼 + 𝜌(𝛾 + 𝜀)

2𝛼𝜌

𝜕4𝑣

𝜕𝑡2𝜕𝑥2
+

(𝜇 + 𝛼)(𝛾 + 𝜀)

2𝛼𝜌

𝜕4𝑣

𝜕𝑥4
= 0, (2) 

Waves which are described with the help of system (1) or equation (2) have the dispersion. The 

law of dispersion is given by the solutions to the following equation [5]: 

𝜇 + 𝛼

𝜌

𝛾 + 𝜀

𝐼
𝑘4 + (

4𝛼𝜇

𝐼𝜌
− 𝜔2 (

𝜇 + 𝛼

𝜌
+

𝛾 + 𝜀

𝐼
)) 𝑘2 − 𝜔2 (

4𝛼

𝐼
− 𝜔2) = 0. (3) 

Consider further the composite rod, which is a set of two bars (layers) which are in contact with 

each other, and the force of contact interaction is assumed to be linear visco-elastic. The movement 

of the rods describes with the help of the system of equations: 

𝐸1𝑆1

𝜕2𝑢1

𝜕𝑥2
= 𝜌1𝑆1

𝜕2𝑢1

𝜕𝑡2
+ 𝑅(𝑢1 − 𝑢2) + 𝑅1 (

𝜕𝑢1

𝜕𝑡
−

𝜕𝑢2

𝜕𝑡
), 

𝐸2𝑆2

𝜕2𝑢2

𝜕𝑥2
= 𝜌2𝑆2

𝜕2𝑢2

𝜕𝑡2
+ 𝑅(𝑢2 − 𝑢1) + 𝑅1 (

𝜕𝑢2

𝜕𝑡
−

𝜕𝑢1

𝜕𝑡
), 

(4) 

where 𝑢𝑖  – longitudinal displacements of the rods, 𝐸𝑖, 𝑆𝑖, 𝜌𝑖(𝑖 = 1, 2) – their parameters (Young 

modulus, squares of transversal intersections and densities), 𝑅, 𝑅1– coefficients of elastic and vis-

cous interactions between the rods. 

Firstly, let us consider the case when the force of contact interaction between the rods is linear 

elastic, i.e. 𝑅1 = 0. Then the system (4) can be reduced to a single equation with respect to dis-

placements one of the rods, for example 𝑢1. For that it is enough to express the 𝑢2 from the first 

equation and substitute into the second. The result is an equation in the following form: 

(1 +
𝜌1𝑆1

𝜌2𝑆2
)

𝜕2𝑢

𝜕𝑡2
− (𝐶2

2 + 𝐶1
2

𝜌1𝑆1

𝜌2𝑆2
)

𝜕2𝑢

𝜕𝑥2
+

𝜌1𝑆1

𝑅
(

𝜕4𝑢

𝜕𝑡4
− (𝐶1

2 + 𝐶2
2)

𝜕4𝑢

𝜕𝑡2𝜕𝑥2
+ 𝐶1

2𝐶2
2

𝜕4𝑢

𝜕𝑥4
)

= 0. 

(5) 

Here 𝑢 = 𝑢1(𝑥, 𝑡), 𝐶1 = √
𝐸1

𝜌1
, 𝐶2 = √

𝐸2

𝜌2
 – velocities of longitudinal waves in the rods. The equa-

tion (5) coincides in form with the equation of the dynamics of the Cosserat medium (2). This fact 

gives an opportunity to simulate medium with microstructure with the help of the movement of 

laminated rod. Comparing the coefficients of the equations (5) and (2), we obtain a system of equa-

tions that allows to express the elastic constants of micropolar medium through the parameters of 

the rods: 

1 +
𝜌1𝑆1

𝜌2𝑆2
= 2; 𝐶2

2 + 𝐶1
2

𝜌1𝑆1

𝜌2𝑆2
= 2

𝜇

𝜌
; 

𝜌1𝑆1

𝑅
=

𝐼

2𝛼
; 

𝜌1𝑆1

𝑅
(𝐶1

2 + 𝐶2
2) =

(𝜇 + 𝛼)𝐼 + 𝜌(𝛾 + 𝜀)

2𝛼𝜌
; 𝐶1

2𝐶2
2

𝜌1𝑆1

𝑅
=

(𝜇 + 𝛼)(𝛾 + 𝜀)

2𝛼𝜌
. 

(6) 

The expressions (6) can be represented in the following form: 

𝜇

𝜌
=

𝐶2
2 + 𝐶1

2

2
,
𝛾 + 𝜀

𝐼
= 𝐶2

2,
𝜇

𝜌
=

𝐶2
2 − 𝐶1

2

2
,

𝐼

2𝛼
=

𝜌1𝑆1

𝑅
. (7) 

From (4) follows one more expression: 

𝛽 + 2𝛾

𝐼
=

2𝐶2
2𝐶1

2

𝐶2
2 + 𝐶1

2. (8) 

As it follows from (7), (8) the velocity of the shear wave 𝐶𝜏 = √
𝜇

𝜌
 and velocities of rotational 

waves 𝐶𝜓 = √
𝛾+𝜀

𝐼
, 𝐶𝛽 = √

𝛽+2𝛾

𝐼
 in medium with microstructure depend only on velocities of longi-

tudinal waves in the rods. For a variety of composite materials the relations between the characteris-

tic velocities of elastic waves may be different. In particular, in [6] it is shown that for the compo-

site "aluminum fraction in the epoxy matrix" characteristic velocities related as follows: 𝐶𝛽 > 𝐶𝜓 >

𝐶𝜏. Since the rods parameters are set in advance, in order to be compliant with the Cosserat medium 
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it is necessary that the density and cross-sectional areas are proportional (
𝜌1

𝜌2
=

𝑆1

𝑆2
) and Young mod-

ulus are chosen in the way so that 
𝐸2

𝜌2
>

𝐸1

𝜌1
 . 

To introduce friction in Cosserat continuum model let us assume, that the force of the contact in-

teraction between the rods is linear visco-elastic (𝑅1 ≠ 0) and the motion of the rods is described 

by the system of equations (4). As in the previous case, it can be reduced to one equation. Thus, 

adding the two equations of the system (4), we obtain the relationship in the form: 

𝜌1𝑆1

𝜕2𝑢1

𝜕𝑡2
− 𝐸1𝑆1

𝜕2𝑢1

𝜕𝑥2
= 𝐸2𝑆2

𝜕2𝑢2

𝜕𝑥2
− 𝜌2𝑆2

𝜕2𝑢2

𝜕𝑡2
. (9) 

From the first equation it follows: 

𝑅𝑢2 + 𝑅1

𝜕𝑢2

𝜕𝑡
=  𝜌1𝑆1

𝜕2𝑢1

𝜕𝑡2
− 𝐸1𝑆1

𝜕2𝑢1

𝜕𝑥2
+ 𝑅𝑢1 + 𝑅1

𝜕𝑢1

𝜕𝑡
 (10) 

and the obtained expressions (9), (10) substitute into the second equation of the system. As a result 

we obtain the equation with respect to 𝑢 = 𝑢1(𝑥, 𝑡) which differs from the equation (5) only by the 

presence of dissipative terms: 

𝜕2𝑢

𝜕𝑡2
−

𝐶2
2 + 𝐶1

2

2

𝜕2𝑢

𝜕𝑥2
+

𝜌1𝑆1

2𝑅
(

𝜕4𝑢

𝜕𝑡4
− (𝐶1

2 + 𝐶2
2)

𝜕4𝑢

𝜕𝑡2𝜕𝑥2
+ 𝐶1

2𝐶2
2

𝜕4𝑢

𝜕𝑥4
)

+
𝑅1

𝑅
(

𝜕3𝑢

𝜕𝑡3
−

𝐶2
2 + 𝐶1

2

2

𝜕3𝑢

𝜕𝑡𝜕𝑥2
) = 0. 

(11) 

All other terms remain unchanged, so that (11) can be interpreted as the equation of Cosserat 

medium with internal friction. Here 
𝑅1

𝑅
 - the coefficient of dissipation and elastic constants of mi-

cropolar medium are linked with the parameters of the rod with the help of expressions (6) and (7). 

Thus, the visco-elastic operator has been introduced micropolar continuum. In the Cosserat model 

the dissipation is determined by terms proportional to 𝑢𝑡𝑡𝑡 and 𝑢𝑡𝑥𝑥 that resembles the Maxwell's 

model of internal friction [7]. 

For the analysis of dispersion and dissipative properties of the waves let us change the variables 

in the equation (11) to the dimensionless ones: 𝑡′ =
𝐶1

2+𝐶2
2

2

𝑡

𝑟
, 𝑥 ′ =

𝑥

𝑟
, 𝑢′ =

𝑢

𝑢0
, where 𝑢0 – character-

istic amplitude of the wave, 𝑟 = √𝐶1
2+𝐶2

2

2

𝜌1𝑆1

𝑅
 – some spatial scale. As a result, the equation (11) 

takes the form (strokes over the dimensionless variables are omitted): 

𝜕2𝑢

𝜕𝑡2
−

𝜕2𝑢

𝜕𝑥2
+

𝜕4𝑢

𝜕𝑡2𝜕𝑥2
+ 𝑑

𝜕4𝑢

𝜕𝑥4
+

1

2

𝜕4𝑢

𝜕𝑡4
+ 𝛿 (

𝜕3𝑢

𝜕𝑡3
−

𝜕3𝑢

𝜕𝑡𝜕𝑥2
) = 0. (12) 

There are two dimensionless parameters in (10). One of them 𝑑 =
2𝐶1

2𝐶2
2

(𝐶1
2+𝐶2

2)
2 defines the disper-

sion, but the other 𝛿 =
𝑅1

√𝜌1𝑆1𝑅
 – defines dissipation. For the dispersion parameter is easy to get an 

estimation, if we use the Cauchy inequality of arithmetic and geometric means ((𝑎 + 𝑏) >

2√𝑎𝑏, 𝑎 > 0, 𝑏 > 0, 𝑎 ≠ 𝑏). It is obvious, that the dispersion parameter 𝑑 <
1

2
, and the presence of 

dissipation leads to the fact that  frequency and wave number of linear wave are connected through 

complex dispersion relation:  

𝜔2 − 𝑘2 + 𝜔2𝑘2 − 𝑑𝑘4 −
1

2
𝜔4 + 𝑖𝛿𝜔3 − 𝑖𝛿𝜔𝑘2 = 0. (13) 

The equation (13) is a biquadratic one with respect to the wavenumber 𝑘. If we resolve it, we ob-

tain the dependencies in the form: 

𝑘1,2 =   
1

√2𝑑
(𝜔2 − 1 − 𝑖𝛿𝜔 ± √(𝜔2 − 1 − 𝑖𝛿𝜔)2 − 2𝑑𝜔4 + 4𝑖𝑑𝛿𝜔3 + 4𝑑𝜔2)

1
2
 (14) 
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From the (21) it follows that the wavenumber is a complex 𝑘 = 𝑘′ + 𝑖𝑘′′ , where 𝑘′ =
𝑅𝑒(𝑘), 𝑘′′ = 𝐼𝑚(𝑘). This means that the wave has the constant of propagation 𝑘′and exponentially 

decays with damping coefficient 𝑘′′. 

On the dispersion plane (𝜔, 𝑘′), where 𝑘′ is the real part of the complex wavenumber 𝑘, there 

are two dispersion branches emanating from the origin of coordinates. In this case one branch at 

low frequencies is close to the straight line where 𝜔 = 𝑘′, but at high frequencies tends to asymp-

tote 𝜔 = √1 − √1 − 2𝑑𝑘′. The second branch emanates from the origin of coordinates along the 

line 𝜔 =
2√𝑑

𝛿
𝑘′, wherein the tilt angle decreases with increasing of dissipation coefficient 𝛿. At 

high frequencies this branch tends to the asymptote 𝜔 = √1 + √1 − 2𝑑𝑘′  which does not depend 

on 𝛿. 

The qualitative form of the dispersion relations 𝜔(𝑘′) is represented in the    Figure 1 when 

𝑑 = 0.25, 𝛿 = 0.1. 

 

 
Figure 1.The dispersion characteristics of visco-elastic Cosserat medium: the dependency of the 

frequency on the real part of the wave number 

 

In the Figure 2 are shown the dependencies of imaginary parts 𝑘′′ of the wave number 𝑘 on the 

frequency 𝜔. There are two branches on the plane (𝑘′′, 𝜔), one of them emanates from the origin of 

the coordinates and with the growth of the frequency tends to the horizontal asymptote               

𝑘′′ =
𝛿(1−𝑝2)

2𝑝(2𝑑𝑝2−1)
, where 𝑝 =

1

√1+√1−2𝑑
. The second branch 𝑘′′ emanates from the point 𝜔 = 0, 𝑘′′ =

1

√𝛿
 and decreases with the increase of frequency, coming close to the horizontal asymptote 𝑘′′ =

𝛿(1−𝑝1
2)

2𝑝1(2𝑑𝑝1
2−1)

, where 𝑝1 =
1

√1−√1−2𝑑
 . 

 

 
Figure 2.The dispersion characteristics of visco-elastic Cosserat medium: the frequency depend-

ence of the imaginary part of the wavenumber 
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Thus, in the low frequency range the damping coefficient 𝑘′′ depends on the wave frequency, 

but damping in the high frequency range becomes the frequency-independent, as in this case, the 

influence of dispersion effects become greater. 

In the Figure 3 are depicted the frequency dependencies of the ratio 
𝑅𝑒(𝑘)

𝐼𝑚(𝑘)
. The inequality        

𝑅𝑒(𝑘)

𝐼𝑚(𝑘)
> 1 defines the frequency ranges where the process of wave propagation prevails over the 

process of its decaying.  

 

 
Figure 3. The dispersion characteristics of visco-elastic Cosserat medium: the frequency depend-

ence of the ratio of real part of the wave number 

3. Elastic contact of nonlinear rods 

Let us consider the studying of split-designed rod, which represents the assembly of two nonlin-

ear elastic rods (layers) which interact with each other. The dynamics of the rods can be described 

with the system of equations: 

𝐸1𝑆1 (1 + 𝛼1

𝜕𝑢1

𝜕𝑥
)

𝜕2𝑢1

𝜕𝑥2
= 𝜌1𝑆1

𝜕2𝑢1

𝜕𝑡2
+ 𝑅(𝑢1 − 𝑢2), 

𝐸2𝑆2 (1 + 𝛼2

𝜕𝑢2

𝜕𝑥
)

𝜕2𝑢2

𝜕𝑥2
= 𝜌1𝑆1

𝜕2𝑢2

𝜕𝑡2
+ 𝑅(𝑢2 − 𝑢1) 

(15) 

where 𝑢𝑖  –longitudinal displacements of the rods, 𝐸𝑖, 𝑆𝑖, 𝜌𝑖(𝑖 = 1, 2)  – their parameters (Young 

modulus, squares of transversal intersections and densities), 𝑅– coefficients of elastic interactions 

between the rods, 𝛼1,2 – coefficients which characterize their geometrical and physical nonlineari-

ties. 

The system (15) can be reduced to one equation. Indeed, let us introduce dimensionless varia-

bles: 

𝑈 =
𝑢

𝑢0
, 𝑦 =

𝑥

𝑋
, 𝜏 =

𝑡

𝑇
, 𝛾 = 1 +

𝜌1𝑆1

𝜌2𝑆2
, 

Where 𝐷 =  𝐶2
2 + 𝐶1

2 𝜌1𝑆1

𝜌2𝑆2
, 𝑋 = 𝛬, 𝑇2 =

𝛬2𝛾

𝐷
, 𝑢0 – is a displacement, 𝛬 – the wavelength, which 

satisfy the relation 
𝑢0

𝛬
= 10−4, 𝑇 – the period of the wave. Neglecting items with the power of the 

relation 
𝑢0

𝛬
 greater than three, we will get:  
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𝜕2𝑈

𝜕𝜏2
−

𝜕2𝑈

𝜕𝑦2
+

𝜌1𝑆1𝐷

𝑅𝛾2𝛬2

𝜕4𝑈

𝜕𝜏4
−

𝜌1𝑆1(𝐶2
2 + 𝐶1

2)

𝑅𝛾𝛬2

𝜕4𝑈

𝜕𝑦2𝜕𝜏2
+

𝜌1𝑆1𝐶2
2𝐶1

2

𝑅𝐷𝛬2

𝜕4𝑈

𝜕𝑦4

−
(𝐶2

2𝛼2 + 𝐶1
2𝛼1

𝜌1𝑆1

𝜌2𝑆2
)

𝑅𝛾𝛬2

𝑢0

𝛬

𝜕𝑈

𝜕𝑦

𝜕2𝑈

𝜕𝑦2
= 0. 

(16) 

Here 𝐶1 = √
𝐸1

𝜌1
, 𝐶2 = √

𝐸2

𝜌2
 – the velocities of longitudinal waves in the rods.  

The solution of the equation (16) will search in the stationary waves class, i.e. in the class of the 

following functions 𝑈 = 𝑈(𝑦 − 𝑣𝜏) which depend on 𝑦 − 𝑣𝜏 = 𝜉, where 𝑣 = 𝑐𝑜𝑛𝑠𝑡 – the velocity 

of the stationary wave.  

The partial differential equation (16) can be reduced in this case to the equation of anharmonic 

oscillator with respect to longitudinal deformation 
𝑑𝑈

𝑑𝜉
= 𝑤: 

𝑑2𝑤

𝑑𝜉2
+ 𝑎𝑤 + 𝑏𝑤2 = 0, (17) 

where 

𝑎 =
𝑣2−1

𝐵
, 𝑏 = −

1

2

(𝐶2
2𝛼2+𝐶1

2𝛼1
𝜌1𝑆1
𝜌2𝑆2

)

𝐵𝐷

𝑢0

𝛬
,  

𝐵 =
𝜌1𝑆1𝐷

𝑅𝛾2𝛬2
𝑣4 −

𝜌1𝑆1(𝐶2
2 + 𝐶1

2)

𝑅𝛾𝛬2
𝑣2 +

𝜌1𝑆1𝐶2
2𝐶1

2

𝑅𝐷𝛬2
. 

Note that the roots of the equations 𝐵 = 0 have the following form: 

𝑣1
2 =

𝐶2
2𝛾

𝐷
, 𝑣2

2 =
𝐶1

2𝛾

𝐷
. 

They particularly may satisfy the condition 
𝐶2

2𝛾

𝐷
= 5 − 4

𝐶1
2𝛾

𝐷
 (for certainty, let us suppose that 

𝐶1 > 𝐶2 . In this case 0 <
𝐶2

2𝛾

𝐷
< 1, 1 <

𝐶1
2𝛾

𝐷
<

5

4
,  then 0 < 𝑣1

2 < 1, 1 < 𝑣2
2 <

5

4
. The signs of the 

roots are the following: “−” inside the interval: 
𝐶2

2𝛾

𝐷
< 𝑣2 <

𝐶1
2𝛾

𝐷
 and “+” outside: 𝑣2 >

𝐶1
2𝛾

𝐷
, 𝑣2 <

𝐶2
2𝛾

𝐷
. 

The analysis of (17) shows us that partial solutions of (16) are nonlinear stationary solitary 

waves (solitons). 

In the first case 𝑎 < 0, 𝑏 > 0and soliton has positive polarity. The amplitude of the soliton 𝐴𝑐 

and its width ∆ are described with the following relations: 

𝐴𝑐 =
3(𝑣2 − 1)𝐷

(𝐶2
2𝛼2 + 𝐶1

2𝛼1
𝜌1𝑆1

𝜌2𝑆2
)

𝑢0

𝛬

, ∆=
2

√𝑣2 − 1
𝐵

 

In the Figure 4 there are depicted the dependencies of the amplitude and the width of the soliton 

on its velocity. 
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Figure 4. The dependencies of amplitude (curve 1) and width (curve 2) of the soliton of positive 

polarity on its velocity. 

 

In this case with the growth of the velocity of the solitary wave its amplitude increases while 

width decreases. Such a behavior is typical for classical soliton [3]. 

For the second case 𝑎 < 0, 𝑏 < 0 and soliton has negative polarity. Its amplitude and width are 

described with the following expressions: 

𝐴𝑐 =
3(1 − 𝑣2)𝐷

(𝐶2
2𝛼2 + 𝐶1

2𝛼1
𝜌1𝑆1

𝜌2𝑆2
)

𝑢0

𝛬

, ∆=
2

√1 − 𝑣2

𝐵

 

The dependencies of amplitude and width of the soliton on its velocity are shown in the Figure 5 

 

 
 

Figure 5. The dependencies of amplitude (curve 1) and width (curve 2) of the soliton of negative 

polarity on its velocity. 

 

In this case with the increase of the velocity of the soliton, its amplitude and width grow simul-

taneously. Such a behavior is not typical for classical soliton and is abnormal.   

Thus in the work it has been shown that in the split-designed nonlinear elastic rod can form lo-

calized waves (solitons) of deformations which have both positive and negative polarity. 

4. Conclusions 

We have proposed the approach how elastic and visco-elastic micropolar medium can be simu-

lated with the help of laminated rod. We have introduced a visco-elastic operator into Cosserat con-

tinuum. 

The comparison of dispersion curves in both cases shows that the dissipation has an impact on 

the dispersion properties of the wave only in the low frequency range. At the high frequency range, 
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dissipation does not occur, since the dispersion branches at 𝛿 = 0 and 𝛿 ≠ 0go to the same asymp-

tote. 
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