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ABSTRACT

Implementing speech recognition systems in practical applications requires strategies for handling the inevitable
environmental noise Although some noise cancellation can be accomplished during the preprocessing of the signal,
it is also necessary to consider how the recognition component of the system is affected by different noise levels.
and how it can be enhanced for yeata noise robustness.

his paper describes A new algorithm for improving the performance of a Hidden Markov Model (HMM) recognian
system in noisy environments. The method of state-based smoothing exploiLs the propenies of Hidden Markov
Models in order to reduce the effects of noise during recognition. The algorithm developed consists of an adaptation
of the standard Hidden Markov Model Viterbi scoring procedure. In this adaptation. similar vectors are averaged
together. thus smoothing out effects due to noise.

I. INTRODUCTION

Our initial studies of recognition performance in noisy conditions indicate that Hidden Markov Model-based systems
are sensitive to even low levels of noise. This is the case even when the frontscnd processor is relatively noise
robust (e.g. a filterbanlt). Attempts to combat the problem of noise are usually undenaken in the preprocessing
stage of speech recognition. However. our work indicates that noise cancellaan may profitably be incorpomted
into the Hidden Markov Model recognition phase itself. Algorithms employed in the recognition phase can take
advantage of the specific information about the speech signal embodied in the HMM parameters.

Many speech recognition environments of interest. for example office. automobile. or factory. involve some
background noise sources whose characteristics are changing slowly relative to the speech signal itself. The
problem in this case is not in obtaining infortnation about the noise. which may be gathered during periods of
"silence" in the input, but rather in applying this information.

One option is to implement noise cancelling filters during the initial processing of the signal [1.2]; however, at this
stage little specific information about the speech signal is available. The filters can therefore only apply general
knowledge about the characteristics of the desired signal. such as short term coherence for voiced speech.
Subtraction of the noise energy levels from the noise contaminated speech can also be applied for specual
parameu-isations. but this simply shifts the problem to one of urmmean noisct For the case of random noise with
a high variance, this shift to zero~mean will not. by itself. offer much performance improvement.

A significant amount of work has also been done in the area of noise compensation within the recognition phase
[3.4.5]. with considerable success. These approaches take the presence of noise into account by modelling an
independent noise source as well asthe speech source. Some relationship is assumed between the two sources.
either an additive relationship or (more frequently) a "masking" relationship. where either one source or the other is
assumed dominant. Recognition scoring is then changed to reflect the combined model of the unknown which takes:
into account both speech and noise. Since the same noise model or noise mask is applied for all of the speech
HMMs. however. these approaches weaken the discriminant capabilities of the MIN-based system
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The method described here. in contrast. attempts to eliminate noise from the input speech. in on: way it is more
closely related to work such as that by Ephraim et a1 [6]. which addresses the problem of iteratively cleaning noisy
speech. Like that work. our method uses the capacity oi Markov Models to segment speech into quasi-stationary
segments. However Ephraim et al. describe a method for iteratively cleaning the speech waveform, whereas the
research discussed here is concerned with recognian phase reduction of noise in sequences of parameterised speech
vectors.

2. ALGORITHM

We are interested in improvements to the recognition phase of the l-lMM system. The recognition task consists of
matching an unidentified sequence ofobsen-ation vectors

0 = (01.02. . - rOt')

againsteaclt of the models available. The models are defined bythe following paramclcrs:

N number of states
am] probability of transition from state i to state j
m0.) probability of state i emitting output veCtor 01 (output probability density function)

For simplicity left-to-right models are assumed where at the start of processing we are assumed to be in the fitst
stats, i.e. so: I.

ideally the matching process for each model finds the state sequence having the highest probability of producing the
observed sequence of speech vectors. if we know this optimal state sequence,

5 = (51.52“ » ST)

then the probability P(OIM) of the model producing the observed sequence can be obtained as follows:

P(0|M) =or (2.1)

where

$0 = 1

and

or = on alsm .Stlbsl(Ot) i=1. .T (2.2)

The model M which yields the highest P(OlM) value over the whole ohservaLion sequence is the recognition
system output. Le. a guess at the idcntity of the unknown speech.

Recognition phase decoding of the unknou'n is aimed at finding the optimal state sequence S. in particular. the
Viterbi algorithm [7] is in widespread use. and it is an adaptation to the Vitcrhi algorithm which is discussed here.
However, the method of state-based smoothing is cqually applicable to other decoding algorithms.

in a standard Hidden Markov Model recognition system. Viterbi decoding of an unknown observation Sequence
proceeds as follows:
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P(0tM) = i (070)) for all states i=1.N (2.3)

WM:

°0(i)= { (I) io=t:terwise (2'4)

and

°t0)= 3‘3; iI°t-I(i)3IiJ”bj(Ol) for iJ=LN and t=I~T (2-5)

This decoding effective] y divides a sequence of observations into segments corresponding to the states of the I-lMMs.For the left-to-right models which are employed for modelling speech. each state is visited only once. Word modelstypically contain from 3 to 8 states. and word duration ranges from 0.5 to 1.5 seconds. or 50 to 150 observations ifa new parameter vector is produced every l0 milliseconds. Thus on average we expect to remain in one state forseveral contiguous obServan'ons.

The aim of adapting the Viterbi algorithm is to improve
scores to be based on an average of several input vectors.
is based on the assumption that Hidden Markov models segment speech into quasi-stationary segmentscorresponding to the states of the modeL Within a segment we expect the parameter vectors of speech (irrespective. of any noise distortion) to remain fairly constant. Therefore. the vectors in a segment may be averaged togetherwithout a significant loss of information about the speech Averaging will. however. have the desired effect ofeliminating random variau'ons in the input due to noise.

recognition performance by allowing HMM recognition
rather than on the single most recent vector. The method

The state—based smoothing algorithm is outlined below. We use the following definitions:

nm the length oftirne spent in suite i up to and including timer

6“ the average of all observation vectors assigned to state i up to and including time t
¢ini.(j) the initial prolxability score for state i. assigned upon entering that state

Immediately before the calculation of aid). the following parameter updates take place:

ni.t = "i.t»l 4’ 1 (2.6)

.. (n- -t) 6- _ + Ooi.| (21)

Then $10) is calculated according to the following equations. which replace equation 2.5 of the standard Viterbialgorithm:

em): 03:; within for iJ=l..N and t=l..T (2.x)

“ha-e

°t-l(i)a[I'J] bj(01) iej (2.9a)
Wt(iJ)- _ "I _l A n_

4mm) aliJl 1" bJ-(OM) |-' i=j (2.9a)
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if the maximum value yielded by equation 2.8 corresponds to the case iatj. then a transition from state i into statej
has occurod. ln this case the parameters for statej must be re—initialised:

(1-10)
(2.11)

°tn ')=°t-t(i) aliil (2.12)

The noise-cancelling effect of the algorithm lies in the application of equation 2.9b for the self-transition case.
Equation 2.9a. on the other hand. is identical to the standard Viterbi algoritlun. Equation 2.9b can be interpreted as
follows: the score for self-transition is calculated as if the average vector ind been the observed input for the entire
time spent thus far in state i. In other words, assuming we entered state i at time 1 and remained in it up to and
including time t. the score is identical to that which would have beencalculated via normal Viterbi if the input
observation sequence for time (1.1a. . . t) had been:

(Gin -6i,t-- H Gin)

Thus for self-transitions (remaining in one state of a model) the probability score is calculated based on an average
of all the vectors assigned thus far to a given HMM state. For transition from one state to another the assumption
of quasi-stationarity cannot be made since we are assumed to be in transition between one “stable” segment and the
next Therefore only the most recent noisy vector is used to update the probability score.

The efficacy of state-based smoothing depends on zero-mean noise at the input to the recognition phase. For an
energy level based preprocessor such as a frlterbartk. additive noise in the parameter vectors will not be zero mean.
As noted previously. however, general parameters of the noise such as mean energy levels and variances may be
obtained from periods of silence if the noise source is changing slowly. The noise mean may then be subtracted at
the output of the ftlterbank, before further processing takes place. to achieve the desired zerovmean noise condition.

3. EXPERIMENTAL SETUP

The recognition system used to test the state-based smoothing algorithm used 3-state continuous output probability
density Hidden Markov Models. The output pdf for each state was a single multivariate Gaussian with a diagonal
covariance matrix. Model parameters were determined using well-established statistical training methods [8.9].

The experimental dara consisted of the ten digits recorded in the car environmenL The clean portion of the database
was recorded in anochoic conditions: noisy data was obtained in a vehicle driving along the motorway at 100 km/h.
At these high motorway speeds the background noise is dominated by aerodynamic noise whose spectral distribution
is roughly [lat over the tange 0.5 to 4.0 Kill. the range which also contains the most useful information about the
speech signal.

The models were trained and tested on the log energy levels of a 19 channel filterbanlt. sampled at l0 millisecond
intervals. The filter bandwidths and center frequencies are approximately moi-frequency spaced. and are based on the
rocodcr design described in [10]. Clean data was used for training the models: data recorded in a noisy environment
or synthesised by mixing recorded noise with clean data. was used for testing.

Mixing was accomplished by combining periods of noise recorded on the motorway with clean speech repetitions.
The waveforms were first scach so that the overall waveform energy ratio corresponded to the desired signal-to-noise
ratio. and then added together and processed via the filtcrbank. All of the training and testing data was manually
cndpointcd, This and the synthetic mixing of speech and noise introduce a certain degree of artificialin into the
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system. However it enables us to evaluate the algorithm over a wide range of noise conditions. as well asindependently of other system factors such as the accuracy of automatic endpointing.

4. RESULTS

The graph below indicates the results for noisy speech recorded on the motorway. as well as for clean data mixedwith motorway noise at several different sigttal-wnoise ratios.

lot)

80

$

MDED DATA:

4:- with state-based smoothing

+ without italevbued mouthing

MDTORWAY DATA:

20 o with state-based smoothing
0 without sluts-based smoothing

Pe
rc

en
t
A
c
c
u
r
a
c
y

‘6

 

-10 0 10
Slgnal-to-Noise Ratio (decibels)

Figure 4.1 - Pcrfon-nanoe or State-Based Smoothing Algorithm

The performance gains indicate significant improvement over a wide range of signat-to-noise ratios, Particularlylarge improvements occur for low SNRs, in the range -l0 to +3 dB. Titus the algorithm may be well suited forusein environments characterised by high levels of background noise. The weaker performance of the algorithm onhigh signal-to-noise ratios may be due to the approximate nature of the assumptions made. At these SNRsperformance without the algorithm is already fairly highI and the amount of speech information lost through theaveraging of several input vectors may be significant relative to the noise cancellation obtained. Moreover theadaptation of the Viterbi equation is biased towards self-transition. Score updates for self-transition can takeadvantage of the smoothing effect. whereas transitions from one state to the next are based on a single noisy vectoralone. Thus it is possible that the noise cancelling method may introduce segmentation errors of its own.

The general applicability of the method described here remains to be determined through testing in a variety of noiseconditions, recognition styles. and vocabulary sizes. However the results obtained here suggest that thisstraightforward method may be effective in enhancing the noise robustness of HMM reocgnition' systems. Perhapseven more importantly. the success of this initial work suggests further research directions. particularly in applyingmore sophisticated filtering methods to the smoothing process. As an extension of this work,rcscarch is currentlyunderway into the development of HMM state-based Wiener filtering. '
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