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ABSTRACT

Implementing speech recognition systems in practical applications requires stratepies for handling the inevilable
environmental noise. Although some roise cancellation can be accomplished during the preprocessing of the signal,
it is also necessary to consider how the recognition component of the system is affecied by different noise Jevels,
and how it can be enhanced for greater noise robustness.

This paper describes & new algorithm far improving the performance of a Hidden Markov Mode]l (HMM) recogniton
system in noisy environmems. The method of state-based smoothing exploits the properties of Hidden Markov
Models in order W reduce the cffects of notse during recognition. The algorithm developed consists of an adaptation
of the standard Hidden Markov Model Viterbi scoring procedure. In this adaptation, similar vectors are averaged
together, thus smoothing out effects due to noise.

I. INTRODUCTION

Qur initial swdies of recognition performance in neisy conditions indicate that Hidden Markov Model-based syslems
are sensitive 10 even low levels of noise. This is the case even when the front-end processor is relatively noise
robust (e.g. a filterbank). Autempis 1o combat the problem of noise are usuatly undertaken in the preprocessing
stage of speech recognition. However, our work indicates that noise cancellation may profitably be incorporated
into the Hidden Markov Model recognition phase itself. Algerithms employed in the recognition phase can ke
advantage of the specific information about the speech signal embodied in the HMM parameters,

Many speech recognition environments of interest, for example office, automobile, or factory, involve some
background noise sources whose characteristics are changing slowly relative 10 the speech signal itself. The
problem in this case is not in obiaining information about the noise, which may be gathered during periods of
"silence” in the input, but rather in applying this infarmation.

One option is 1o implement noise cancelling filiers during the initial processing of the signal [1.2}; however, at this
stage lite specific information about the speech signal is available. The fillers ean therefore only apply general
knowledge about the characieristics of the desired signal, such as short term coherence for voiced specch.
Subtraction of the noise energy levels from the noise contaminated speech can also be applied for spectral
parametrisations, but this simply shifts the problem to onre of zero-mean noise. For Lhe case of random noise with
a high variance, this shill 1o zero-mean will not, by iiself, offer much performance improvement

A significant amount of work has also been done in the arca of noise compensation within the recognition phase
[3.4,5), with considerable success. These approaches take the presence of noise into account by modelling an
independent noise source as well as the speech source.  Some relationship is assumed between the two sources,
cither an additive relationship or (more frequenily) a "masking” relationship, where cither one source or the other'is
assumed dominant. Recognition scoring is then changed to reflect the combined model of the unfnown which makes:
into account both speech and noise. Since the same noise model or noise mask is applied for all of the specch
HMMs, however, these approaches weaken the disceiminant capabilities of the HMM-based sysicm,

This rescarch forms part of Esprit II Praject p2101, "Adverse-cnvironment Reengnilion of Speeck”
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The method described here, in contrast, auempis to climinate noise from the input speech. In this way it is more
closely related 1o work such as that by Ephraim et al (6], which addresses the problem of iteratively cleaning noisy
speech, Like that work, our method uses the capacity of Markov Models 10 segment speech inio quasi-stationary
segmenis. However Ephraim et al. describe a method for iteratively cleaning the speech waveform, whereas the
research discussed here is concerned with recognition phase reduction of noise in sequences of paramelerised speech
VECIors.

2, ALGORITHM

We are interested in improvements (o the recognition phase of the HMM system. The recognition task consists of
malching an unidentificd sequence of observation vectors

0=(01,02,...07)
against each of the models available. The models are defined by the following paramelers:
N number of states
alij] probability of transition from state i 1o slate j
bi{Op probability of state i emirting output vector O {output probability density function)

For simplicity left-to-right models are assumed where at the stan of processing we are assumed to be in the first
state, ie Sp=1.

Ideally the malching process for each model finds (he state sequence having the highest probability of producing the
observed sequence of speech vectors, If we know this optimal state sequence,

§=(51.52....5T)

then the probability P(OIM) of the model producing the observed sequence can be obtained as follows:

P(OIM) = & @2.1)
where

dp=1
ad

D=0 alS.1.80bs (0 =17 2.2)

The model M which yiclds the highest P(OIM) value over Lhe whole observation sequence is the recognition
system output, i.c. a guess at the identity of the unknown speech,

Recognition phase decodin'g of the unknown is aimed ai finding the optimal state sequence S. In particular, the
Viterbi algorithm [7] is in widespread use, and it is an adaptation to the Viterbi algorithm which is discussed here.
However, the method of siate-based smoothing is equally applicable to other decoding algorithms,

In a siandard Hidder Markov Model recognition system, Viterbi decoding of an unknown obscrvation scquence
proceeds as follows:
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= nax . R
P{OIM) = over i { 7)) for all staies i=1. N (2.3)
where
o 1 =1
Poli)= { 0  otherwise (24)
and

Oili)=T2% (D 10alijlbO) forij=l.Nandt=sl.T  (25)

This decoding effectively divides a sequence of obsarvations into segments comresponding to the states of the HMMs,
For the left-to-right models which are employed for modelling speech, each state is visited only once. 'Waord models
typically contain from 3 1 8 states, and word duration ranges from 0.5 to 1.5 seconds, or 50 10 150 chservations if
a new parameter vector is produced every 10 milliseconds. Thus on average we expect o remain in one state for
several contiguous observations,

The aim of adapting the Viterbi algorithm is o improve recognrilion performance by allowing HMM recognition
scores 10 be based on an average of several input vectors, rather than on the single most recent vecior. The method
is based on the assumption that Hidden Markov models segment speech into quasi-stationary segments
corresponding to the states of the model. Within a segment we expect the parameter vectors of speech (imespective

. of any noise distortion) to remain fairly constant. Therefore, the vectors in a segmenl may be averaged together
without a significant lass of information about the speech. Averaging will, however, have the desired effect of
eliminating random variations in the input due to noise.

The statc-based smoothing algorithm is outlined below, We use the following definitions:

njt the lengih of time spent in state i up  and including time t
Gi.t the average of all observation veciors assigned (o state i up 1o and incloding time t
Dinit(§) the initial probability score for state i, assigned upon entering that staie

Immediaiely before the calculation of (), the following parameter updates wake place:

it = Mg + 1 2.6
a e 6,
6, Lo Bipy O an

Lt Nyt

Then (j) is calculated accarding 1o the following equations, which replace equation 2.5 of the standard Viterbi
algorithm: .

SuG)= VAN Lwi)) forij=l.Nandt=1.T  (28)
where
@r-10) ali] bjloy) i®j (2.9a)
Wl(iJ)'-‘{ oA
Dininfi} alif)ie bGP s (2.90)
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If the maximum value yielded by equation 2.8 corresponds o the case i=j, then & wransition from state i into stus j
has occured. In this case the parameters for state j most be re-initialised:

0i:=0 (2.10)
nj. = 1 {2.11)
Pininli=Pr-10} a[ij) 212

The noise-cancelling effect of the algorithm lics in the application of equation 2.9b for the self-wransition case.
Equation 2.9, on the other hand, is identical 1o the standard Viterbi algorithm. Equation 2.9b ¢an be interpreted as
follows: the score for self-transition is calculated as if the average vector had been the observed input for the entire
time spent Lthus far in state i. In other words, assuming we cnicred swate i at time v and remained in it up 10 and
including time t, the score is identical 1o that which would have been calculated via nommal Viterbi if the input
observation sequence for ime (r,r+1, . . t) had been:

(6i" -6i,l-- <O

Thus for self-transitions (rcmaining in one state of a model) the probability score is calculated based on an average
of all the veciors assigned thus far to a given HMM state. For wransition from one state 1o another the assumption
of quasi-stalionarity cannot be made since we are assumed 10 be in transition betwean one "stable” segment and the
next Therefore only the most recent noisy vector is used 10 update the probability score.

The efficacy of state-based smoothing depends on zeto-mean noise at the input to the recognition phase. For an
energy level based preprocessor such as a fillerbank, additive noise in the parameter veciors will not be zera mean.
As noted previously, however, general parameters of the noise such as mean encrgy levels and variances may be
obtained from periods of silence if the noise source is changing slowly. The noise mean may then be subracted at
the autput of the filicrbank, before further processing takes place, 10 achieve the desired zero-mean noise condition.

3. EXPERIMENTAL SETUP

The recognition sysiem used to 1es1 the state-based smoothing algorithm used 3-state continuous output probahility
density Hidden Markov Models. The outpur pdf for each slale was z single multivariate Gaussian with 2 diagonal
cavariance matrix. Model parameters were determined using well-established statistical wraining methods [8.9).

The experimental data consisted of the ten digits recorded in the car environment. The ¢lzan pontion of the database
was recorded in ancchoic conditions: noisy dala was obtained in a vehicle driving along the motrway at 100 km/h,
Al these high motorway speeds the background noise is dominated by serodynamic noise whose spectral distribution
is roughly [at over the range 0.5 to 4.0 KHz, the range which also contains the most useful information about the
speech signal.

The models were trained and tested on the log encrgy levels of a 19 channel filerbank, sampled at 10 millisecond
intervals. The filier bandwidihs and center frequencies are approximately mel-frequeney spaced, and are based on the
vocoder design described in [10], Clean dala was used for Lraining the models; data recorded in a noisy environmeny,
or synthesised by mixing recorded noise with ¢lean daa, was used for testing,

Mixing was accomplished by combining periods of noise recorded on the motorway with ¢lean spcech repetitions,
The wavelorms were first scaled $o that the overall waveform energy rtio corresponded to the desired signal-to-noise
ratio, and then added together and processed via the filerbank. Al of the training and testing data was manually
endpoinicd, This and the synthetic mixing of speech and noise introduce a cerain degree of anificiality into the

556 Proc.t.O.A. Vol 12 Pan 10 {1990)




Proceedings of the Institute of Acoustics

SPEECH RECOGNITION EN NOISE

system. However it enables us to evaluate the algorithm over a wide range of noise conditions, as well as
independently of ather system factors such as Lhe accuracy of aulomatic endpointing,

4. RESULTS

The graph below indicates the results for noisy speech recorded on the motorway, as well as for clean daw mixed
with motorway noise at several different signal-to-noise ratios.

100

MIXED DATA:
o  with state-based smoothing
== wilhout state-based smoothing

MOTORWAY DATA:

o wilh state-based smoothing

. without state-based smoothing

Percent Accuracy

o . T Y
-10 o 10
Signal-to-Noise Ratlo (declbels)

Figure 4.1 - Performance of Suate-Based Smoothing Algorithm

The performance gains indicate significant improvement over a wide range of signal-to-noise ratios, Particularly
large improvements occur for low SNRs, in the range -10 10 +3 dB. Thus the algorithm may be well suited for use
in environments characterised by high levels of background noise. The weaker performance of the algorithm on
high signal-io-noise ratios may be due 10 the approxirnale mature of the assumptions made. Al these SKRs
performance without the algorithm is already fairly high, and the amount of speech information lost through the
averaging of several input vectors may be significant relaiive to the noise cancellation obtained, Morcover the
adaptation of the Viterbi equation is biascd towards self-ransition.  Score updates for self-wransition can ke
advantage of the smoothing effect, whereag transitions [rom one state to the next are based on a single noisy vector
alone. Thus it is possible that the noise cancelling method may inwroduce segmentation emors of its own.

The gencral applicability of the method described here remains 1o be determined through testing in a variety of noise
conditions, recognition styles, and vocabulary sizes. However the results obtained here suggest that this
straighiforward methed may be effective in enhancing the noise robustness of HMM recognition systems. Perhaps
even more importanily, the success of this initial work suggests further research directions, particularly in applying
more sophisticaled filiering methods to the smoothing process, As an eatension of this wark, research is carrently
underway into the development of HMM state-based Wicner fillering. ’
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