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1. INTRODUCTION

Railway-induced ground vibrations may cause noticeable movements of nearby buildings that

result in damage or disamenity, both directly and by generating structure-home noise [1-3]. Both

effects depend strongly on the spectra of railway-induced ground vibrations that. in turn, are

determined by the contributions of difl‘erent excitation mechanisms and by soil properties

Spectra of railway-induced ground vibrations, including train-speed dependent components,

have been studied experimentally [4,5], and qualitative analysis of the quasi-static excitation

mechanism has been attempted [6]. However, no rigorous theoretical investigations of railway-

generated ground vibrations have been carried out and no quantitatively calculated spectra exist in

the literature. _

In this paper we consider theoretically the efl‘ect of quasi-static pressure of wheel axles onto

the track-soil system. In the case of welded rails and perfect wheels, this mechanism is the major

contributor to trainspeed-dependent components of the low-frequency vibration spectra (up to 50

Hz), including the so called passage fi'equency fp = v/d, where v is train speed and d is distance

between sleepers.

2. STATEMENT OF THE PROBLEM

We consider a train having N carriages and moving with speed v on welded track with sleeper

periodicity d. The excitation being considered results from load forces applied to the track from

each wheel axle causing downward deflection of the track. For the low-frequency components of

the spectra most relevant for ground vibration, these deflections can be considered as quasi-

static, producing a wave—like motion along the track with speed v andresulting in a distribution

of the axle load over all the sleepers involved in the deflection distance. Thus. each sleeper acts

as a vertical force applied to the ground during the time necessary for a deflection curve to pass

through the sleeper. This should result in generation of elastic ground vibrations. Since, in the

relevant frequency band, the characteristic wave-lengths of generated elastic waves are much

larger than the sleeper dimensions, each sleeper can be considered as a point-source vertical force.

The problem then requires superposition of the elastic fields radiated by all sleepers caused by the

passage of all axles.
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An important aspect of the above is calculation of the track deflection curve as a function of the
elastic properties of track and soil and of the magnitude of the axle load. The form of the
deflection curve determines the ground vibration frequency spectmm generated by each sleeper.
In turn, these spectra strongly afi'ect'the total vibration spectrum generated by a passing train.

3. DETERMINATION OF THE TRACK DEFLECTION CURVE

Since the track deflection distance is greater than the distance between sleepers, one can ignore
the influence of rail periodic support by sleepers in the quasi-static problem of track deflection
under the impact of a moving load. Instead we treat a track (i.e. two parallel rails with
periodically fastened sleepers) as an Euler -Bemoulli elastic beam of uniform weight p lying on an
elastic or viscoelastic foundation occupying the semispace z > O. Deflection of such a beam
subjected to a vertical point load has been considered by many authors. The classical solution
[7,8] starts with the static beam equation that takes into account a force reaction in the elastic
foundation proponional to the deflection magnitude w. If E and I are Young's modulus and the
cross—sectional momentum of the beam, 0. is the proportionality coefiicient of the elastic
foundation, x is the distance along the beam and Fm is a vertical point force applied at x=0,
then the solution for w has the form

W=(Fm/3E1l33)EXPOBIXDICOXBXHsin(B|Xl)] + Na. (1)

where B = (a/4El)l/4. According to eqn (1), one can take x0 = MB as the total deflection
distance.

The constant at in eqn (l) depends particularly on the stiffness of the ground and of the
rubber pads inserted between rail and sleepers, Calculation of at for typical British Rail tracks
[9,10] gives the values ct = 61.8 MN/mz and B = l.28 m'l. For the typical distance
between sleepers, d = 0.7 m, this implies that about seven sleepers are involved in the deflection
curve associated with each axle.

A more recent approach to an analogous problem in mechanics [8] acknowledges that for this
type of loading tensile stresses cannot be transmitted between the beam and the elastic foundation.
This model is more appropriate for track-soil contacts which can respond only to compressive
stresses. Thus the contact nonlinearity of a real boundary between track and ground is taken into
account.

Analysis of this model shows [8] that for values of the axle load Fm s Fm. = (2p/B)exp(7t)
the simple classical solution (I) which describes a continuous contact between track and
foundation remains valid. However, for Fm > Fcr the solution becomes more complicated and
involves peripheral bulges of the track with loss of contact between track and soil. ln this case the
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problem is solved numerically for coordinates x0 and XI of the deformed track where it

intersects ground level (1 = 0), and for the five coefficients describing the shape of the deflection

curve as a function of applied load.

For our purposes it is sufficient to use a rather rough analytical approximation of the

deflection function for Fm > Fcr _ where only one parameter x0 as a flinction of Fm is taken

into account:

i plot + (Fm/salpl)cos(nx/2xo) for |x|<xo,
w = i (2)

i 0 for lxl > x0 .

Numerical data for x0 as a function of Fm calculated in the paper [8] over the range l.6/B <

x0 < it'll! can be approximated by the equation

x0 = (Mann - [0.4 iongmlzerh - (3)

which describes the decrease in x0 with increasing applied load Fm . Note that this
approximation is invalid for very large loads when x0 approaches the sleeper period d . In this

case. the effect of periodic sleeper support should be taken into account [10].

4. GENERATION OF GROUND VIBRATIONS BY INDIVIDUAL SLEEPERS

To calculate ground vibrations generated by individual sleepers let us consider each sleeper as a

point source of vertical force applied to the surface z=0 at x = 0 and y = 0, with time

dependence determined by the passage of the deflection curve through the sleeper:

P0) = Fm[2w(vt)/wmax](d/xo) . (4)

where wmax is the maximum value ofw(vt). Terms on the right of Fm take into account the

distribution of axle load between sleepers within the deflection curve. We shall now make use of

results from the well-known axisymmetrie Lamb problem for the excitation of an elastic

semispace by a vertical point force applied to the surface. The solution of this problem describes

the corresponding components of the dynamic Green's tensor Gzi (or, for simplicity, the
components of the Green's function) for the elastic semispace. This function satisfies the

dynamic equations of elasticity for a semispace. assumed isotropic and homogeneous. and the
appropriate boundary conditions.
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In what follows only Rayleigh surface waves (the Rayleigh part of the Green's function) are

considered because they transfer most of the vibrational energy. For these waves the spectral 1

density of the vertical vibrational velocity at z=0 may be written in the form [I l]

vz(p,u)) = P(0))Gu(p,(o) = V(m)(le)exp(ikp - Bit/4) _ (5)

where '

W») = ( #2)'max-imam“Ike/urea) . (6)

Here 9 = [(x-tt')2 + 0.302)”2 is the distance between the source (with current coordinates
x', y‘) and the point of observation (with coordinates x, y) , a) = 21tt‘ is a circular fiequency,

kR = (DIOR is the wavenumber of a Rayleigh surface wave where ER is the Rayleigh wave

propagation velocity, k1 = (ll/Cl and kl = w/c‘ are the wavenumbers of longitudinal and shear

bqu elastic waves, where c. = [(3, + 2p.)/po]m and q = (la/m)“2 are longitudinal and shear

prog gation velocities, A. and u are Lame constants, 90 is the ground mass density, and q=

(kn - k|2)"2, The factor F(kR) is a derivative of the Rayleigh determinant

Foo = (2k2 - k8? - 41808 - k.2)1/2(k2 - W” (7)

taken for k = kn , and P(m) = (1121:)! P(t) exp(imt)dt is a Fourier transform of P(t). The

factor le in eqn (5) describes the cylindrical spreading of Rayleigh waves with propagation

distance.
For a viscoelastic semispace the elastic constants L and u should be considered as complex

numbers taking into account fiequency dependent attenuation and dispersion of elastic waves

[12]. This would make cu, q and c1 complex also, resulting in a decrease in the amplitudes of

all waves with distance and a broadening of their time—fonns because of velocity dispersion. In the

calculations below we will not take velocity dispersion into account since it is rather small for the

homogeneous semispace being considered,

It is seen from (4) and (S) that the Fourier transform P(m) plays a very important role in

determining the spectra of radiated waves. In the case under consideration. P(to) should be

determined separately for Fm s I":r and for Fm > F“ for which the deflection function w(x) is

described by eqns (1) and (2),(3) respectively. Taking the Fourier transforms. one can easily

obtain the corresponding analytical expressions for P(u)):
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Pm) = ( Fmd/WXOHOBV + 0)/[(BV)2 + (BV + 002] + ( )
8

(213v - «WW + (Bv - m)2]l . for rm 5 re, ;

m) = (Fmd/trxo)(2nleo)cos(mxolv)l[m2 41mm?) _ (9)

for Fm > Far ,

where x0 is determined by eqn (3)
One can generalise these results to describe the action of two axle loads separated by the

distance a-(the case ofa bogie): - »-

Pb (m) =‘2P(Im)cos(malZv) . A (to) '

5. CONSIDERATION OF ALL SLEEPERS AND AXLES

* To calwlate the vibration field radiated by a complete moving train requires the superposition of
fields generated by each sleeperoactivated by all axles of all caniages, with the time and space
differences between sources (sleepers) being taken into account.

Using the Green‘s function formalism this may be written in the form

vz(x.y.w)= I I P(x'.y'.o)cu(p.m)dx'dy.. . . (H)

where P(x',y',a)) describes the total distribution of forces along the track. This distribution is
found by taking a Fourier transform of the time and space dependent track deflection fitnction.
, lt _is,usefiil firstly to consider a single axle load moving with speed v along the track lyingon
perfectly elastic ground. Then the load force which makes a-wave-like motion along the track
may be written in the form

pa, x', y'=0) = E P(t-x'lv)5(x'-md)6(y'), (12)
m=-uu

with the Fourier transfomt
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P(x',y,m) = (1/270? : P(t-x'/v)exp(imt)5(x'-md)8(y')dt , (l3)
—.-=—a

where 6(x'-md) takes the periodic distribution of sleepers into account. Integration yields

P(x',y',to) = P(u))exp(imx'/v) 2.: 5(x'-md)5(y‘), (l4)

‘. Substituting eqn (l4) into cqn (ll) and using the properties of integrating delta-functions we
have, alter taking eqns (5),(6) into account, the following expression for the vertical vibration
velocity of Rayleigh waves generated at x=0, y=yo ’by a single axle load moving along the
track with speed v: V _ '

V;(x=0.y-70_w)=-iV(w)f: expli(m/Y)md+i(WcR)Pm]/J_om. (IS)

where pm = [yo2 + (md)2]m. Formula (l5) shows that a single moving load generates a
quasi-discrete spectrum with frequency peaks close to fps, where fP=v/d is the so called passage
frequency, and s = l,2,Jm Deviation from perfect discreteness results ti'otn the i(m/cn)pm term
in eqn US) which takes into account path-length differences of waves propagated from each
sleeper to the point of observation.

To take account of all axles and carriages one needs a more complicated load fimetion:

. N—l
P(!.X'.Y‘=0)=' Z Z AanO-(“NU/VHF“-(X'+M+fiL)/V)l5(X'-md)5(y')- ('6)

m.-_—¢: nan

Here N is the number of carriages, M is the distance between bogies in each carriage and L is
the total carriage length Dimensionless quantity An is an amplitude weight-factor to account
for difi‘ercnt carriage masses. but for simplicity we will suppose all carriage masses to be equal
(An=l).

Substituting eqn (16) into eqn (l4) and then into eqn (ll), and making simple transformations
similar to the above, one obtains the following expression for the frequency spectra of vertical
vibrations at z=0 generated by I moving train:

a N-I

vz (x=o_ y=yo, m) = was) 2 z [exp(—yap,n/cR)/fpn,][t+ exp(iMm/v)]-
n4=o

eXPGWVde + “1-) + i(¢°/Ca)9m) - (17)
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In writing eqn (17) we account for attenuation in soil by replacing l/cR in the exponentials by

the complex value lIcR + iy/cR , where y <<l is a constant describing the “strength'I of

dissipation of Rayleigh waves in soil (eqn (17) implies a linear frequency dependence of soil

attenuation, in agreement with experimental data [l3,l4]).

The summation over m in eqn (17) considers an infinite number of sleepers. However, the

contribution of remote sleepers is small because of soil attenuation and cylindrical spreading, and

a few hundred sleepers are adequate for practical calculations.

It follows from eqn (17) that the spectrum of train-induced vibrations is quasi-discrete, with

the maxima at frequencies detemtined by the condition (to/v)(md + nL)= 21tl, where l =1.2,3,...

Obviously, =0 corresponds to the passage frequencies f 5 determined by the sleeper period d.

Other more frequent maxima are determined either by t e carriage length L (m=0) or by a

combination of both parameters (for n30, maO)‘

There are many zeros present in the train vibration spectra These zeros may be used in
practice for suppressing vibrations at chosen frequencies The most important zeros are those

which do not depend on a number of sleepers or carriages and are determined only by the

geometrical parameters of a carriage. One of these zeros is determined by the distance a between

the wheel axles in a bogic (see eqn (10) for the spectmm Pb). Setting Pb to zero, one can

obtain f2 = (v/a)(n + Hz) for zero-fiequenciest It: for instance, we want to use this condition to

suppress one of the train passage frequencies fps, we should choose fz to be equal to fps. It

follows from this that the value of a should be determined by

a = (d/s)(n + l/2) . I (18)

It is sensible to choose a value of a close to existing values. For British Rail heavy-freight

carriages a = 2.2 m usually. Therefore, to suppress the main passage fi'equency (s=l) one can

chose F 2,45 m corresponding to n=3 in eqn(18).

Other important zero frequencies reflect the distance M between bogies in a carriage.
Condition (18) is also valid for this case if a in eqn (18) is replaced-by M. The value of M

providing suppression of the main passage fi-equency which is closest to the British Rail standard

(M=4,88 m) is 455 in, corresponding to n=6.

6. NUMERICAL CALCULATIONS AND DISCUSSION

Numerical calculations of train-induced ground vibrations described by equations (l7), (6)-( 10)

and (3) have been carried out for different values of applied load Fm, train speed v, soil

attenuation coefficient 1 , and for different geometrical parameters of both track and train: d, a,

L, M. The elastic parameters of the soil considered were cR= 250 m/s, ct= 272 m/s, cl= 47] m/s

(congsponding to a Poisson's ratio of o=0.25). The mass density of soil p0 was set at 2000

kg/m .
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Figure 1 shows the theoretical frequency spectra for a S—carriage train moving with speed v
= 50 km/h. Calculations have been carried out for an axle load of 100 kN (below the critical
value Fcr= 108.3 kN determined for a typical track weight with concrete sleepers, p=3 kN/m)
and for a load of 200 kN (above the critical value). Geometrical parameters of the train were
chosen typical of British Rail heavy-freight trains [6]: L= 8.3 m, M = 4.88 m and a = 2.2 m.
The soil attenuation parameter 1 was chosen to be 0.00478, yo was 30 m. According to the
figure, both spectra have maxima at the train passage frequencies (the main passage frequency
for v=50 lun/h is 20 Hz) and at frequencies determined by train geometrical parameters.
Generation is more efficient at 200 kN axle load, especially at higher frequencies; this results
mainly from the sharper form of the deflection curve w(t-x/v) and hence the wider spectrum
P(¢o) . Note that the shapes and intensities (in dB) of the calculated spectra are in good
agreement with experimental data [4,5].

The vibration spectra calwlated for difi‘erent train speeds, v = 50 km/h and v = 40 km/h, are
shown in Fig.2 for an axle load of 100 kN. The parameters of track, train and soil are the same as
before. As expected, changing the train speed displaces the spectral maxima,

The efl‘ect of soil attenuation 1 on the Vibration spectra is shown in Fig 3 for the fixed
distance yo= 30 m and axle load of 200 kN; all other conditions being the same as in Fig.l. It is
seen that with increasing 1 all spectral components are damped, the damping being stronger at
higher fiequencies. Note that spectral components at the passage frequencies are less afl'ected by
soil attenuation than those at combined frequencies determined by train geometrical parameters.
This is because the passage frequency response is determined mainly by sleepers close to the point
of observation, whereas the response at combined frequencies is determined by signals from
remote carriages which are strongly attenuated.

Fig. 4 shows how choice of the distance a between axles in a bogie can suppress ground
vibration intensity at the main passage frequency fp—w/d. The corresponding distance a = 2.45 m
was calculated using eqn (18) for d = 07 tn. The axle load was 100 kN, the train speed v=50
km/h, and the distance yo =30 m, other parameters being same as in previous figures. According
to the figure, the vibration level at the lowest passage frequency is suppressed by about 20 dB,
i.e. a factor of 10 relative to that for a = 2.2 m. Of course, the same efi'ect could be achieved by
changing the sleeper period d .

7. CONCLUSIONS

Generation of ground vibrations by moving trains has been considered theoretically using the
Green's function formalism. Expressions for the ground vibration spectra have been obtained as
functions of track, train and soil parameters.

Numerical calculations have beencarried out for difl‘erent physical and geometric properties of
track. train and soil. The shapes and intensities of the spectra are in good agreement with
experimental data.
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Vibration spectra depend strongly on the axle loads of the carriages: if the axle load exceeds a
critical value beyond which peripheral bulges appear in the track, the vibration level increases
significantly, especially at higher frequencies

By proper selection of the distance between wheel axles in a bogie, and between bogies in a

carriage (or between sleepers in a track) it is possible effectively to suppress vibration levels at
the train passage frequencies
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