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! NUMERICAL APPROXTMATIONS FOR DETECTION- AND PALSE ALARM
PROBABILITY OF A SQUARE LAW DETECTOR WITH INTEGRADCR.

Wolfgang Bachmann
fachhochschule, Diisseldorf, W-Germany

‘'he scope of this paper is to present closed form algebraic
aprroximations for false alarm and detection probubility of a
general purpose detector: A square law rectifier followed by a
® 1owp5_:ss filter (integrator) and a binary threshold circuit.

Assuming normal, white bandpass noise and rectangular lownass
filter results in a % ~distribution of the rectified, smoothed
noise. llence, false alarm probability, Pp» 18 given by

pp = o[no| n] (1)

oo
where Q[xﬂv] =-§Xt§4 exp&%]dt/(zgr?)

N, =number of degrees of (reedom, N=2B/w, B=bundpass bandwidth,

W=lowpass cutoff frequency,wsB, O=u h/V s » = mean (dc) voltage

after the rectifier, Uyp= threshold voltage. Both, the one- and

two channel version of an envelope detector are described by N=2.

If signal and noise can be assumed to have the same statis-

tical and spectral properties, distingnished only by their

2 2 . . . . o
variance, 6 or 6 , the distribution function of +theo rectified
® and smoothed sipnal+noise mixture will be # sealed version of

Bq.1. Hence, detection probaubility, Pg» can be expressed as

| Py = [Nﬁ-lmj | (2

where y= 5:/5:.

i Numerical simulation of ronar operation requires repeated
o | evaluation of ®gs. 1 and 2, or their inverse forms, @[pf,II]
! and X[pd’N’O] - It would be desirable, therefore, to have an
' invertable, closed form expressionfor:lpproximating Q with
negligible error at arbitrary values of all parameters.
® A small step into this direction is given with the following
formulas:




Chig—integralz hJYQ ]

X
erfc -b)e
N
ol n] , (3)
equ[—bc ]
1 1.5 %
where - - i = 3 + .256/(((In ) - 2.4) + 10 )
b = AN/{AN+1) ;
c = N /(2a) ;

erfec = complementary error function

(see approximation given below).

The maximum relutive error of 7q.3 - including the effects of
the erfec-approximation - is

2Q

L

<.09 for 2%0N %400, 0

1P

© <7, and Q >1O_7.

Inserting { =N& in Fq.3 gives Pe according. to Eq;I; similarily,
inserting _'X":N@/(1+[) gives Dy - '

¥a+3 can he easily inverted to ébtain

1

X 1 ) | i
N b o+ Eerf01[o erfc[—béﬂ s (4)
where erfei= inverse cbmplementary error function

(see approximation below).

2
Ipserting A=py in Eq.4 nignifies-%::@ . Inserting Q=pd signifies
% =9/(1+X), from which X‘is readily found.

ROC~curves cin now be expressed in closed form (obtained from
inserting'@,given by ¥q.4, into Pq+ &lven by Eq.3 )

Pq = F erfc[bc(F—1) + F erfci[pf/F]] S (5)

where - E.: (1+Jfa, and P = erfc[-bc} .




Following Middleton (1) the 'minimum detectable signal" is

the signal-to-noise ratio, v, at the detector input, required
for achieving 4 given pf,/pd combination. Therefore, Tg. 5 is
resolved for X':

%
- | bc + erfci[pf erfc[-bc]] .
X bc + erfci[pd erfc[~bc]]

L (6)

cpecial case: The envelope detector:

For N=2 the above formulas take their simplemost form:

py = exp[-0] | P | (7)
Py = exp(—ﬂ/(wx)] ; ()
Py = pr/(HX) ; (9)
X’ - i—i_il;_ -1 . | (10)

Complementary error function:

Definition o

erfc[x] = f%gexp[—t]dt . {11)
x ' o
Approximation <« 20: [x]
erfc[x] = { i ¥ . , (12)
x<0: 2 —?Lad
where \p[z]'&‘:exp[—- 2te1.27 2° J/ -\/1-+ Az+ ,882°

The maximum relative error is

A -
?g' < .004 for 08zl o,
‘£i|<.05z for 0%z $.06
b



Inverse complementary error function:

Definition
erfci[erfc[x]] =x . (13)

Approximation

na

1 ¢ | ]
q([y- (14)

| 0ty
erfm[bf]:{ 2 =2y ’ t

1<y

nA

where '\r[z] =-‘/z - 1ln z - 1.' /(1.05= .252z+ .0011lnz ) . .‘

The maximum relative error is

[1¥a

—_—

.
@

l%’ < .01 for 107'8¢,

Conclusion:

A closed form algebraic approximatibn for the chig—Integral has ;.
been presented, It allows to derive simple formulas for false- '
alarm, detection probability and ROC-curves, and to invert thaese .
formulas, All formulas have been programmed and tested on a |
pocket calculator ( TI SE-52). In practical application care must ®
be taken to stay within the range of validity of N,0 and @, as I
specified with Eq.}. Qutside this range the approximation errors

can be much worse than the limit of g7 indicated above. ‘

It is questionable, however, whether it would be wise to
try to extent the range of validity of © and Q, because it would
imply to rely more heavily on the vaulidity of the far-off tails
of the initially assumed Gaussian distribution of the detector : ®

input.
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ABSTRACT

Telecommunications theory associoabes a rharacterizing function, known as
the "scattering fuaction™, witl: the transmission medium of a general
transmissior channel, Under given boundary conditions, given data pate
requirem«nts, and with a knowledge of thz statistical distributions of
noise {(WISUS) in the time dodiain, it ds pussible Lo delfine the scattering
function of the nedium and use it to design the optimal signal for such a
channel., The mathumatical model of this function has been assessed and
experiments in underwatcer acoustic channels have been made to verify the
feasibility of such a method. However, the scattering function was
expressed only in terms of "time spreading" and "frequency smear" of the
trangmitted monocromatic signal waich, to some extent, proved inadequate
for more general and wmore accurate evaluctions. To inprove the definition
of the scattering fuaction it is necessary to introduce also the space and
phase parameters, This paper presents a practical approach for the
estimation of the phase fluctualion of 2 real acoustic signal after several
miles of travel through the ocean along a direct path. The work described
in this paper was supported by the Ytalian Kavy (MMI) and the ITtalian
National Research Council {CNR),

1. GERNERAL

The scattering function of an underwater transmission channel has been
theorctically studied and experimentally verified [1 and 2] and ia both
cases certain hypotheses have been assumed in order to match the
“mathematical model" with the %“real physical system” which, in effect, must
be considered as a "quasi-real physical system",

The scattering function is defined 2s a function of time spreading and
frequency smear: ‘

U(T:w)_

provided by the WSSUS hypothesis (Wide Sense Staticnary Uncorrelated
Scattering). A more general definition of sueh a function, that is clegser
to the real physical situation, may be formuiated by considering at least
twe further parameters of the transmission channel, i,e. the spatial
configuration and the phase behaviour, '

A tentative approach to introduce the spatial paramcters has been developed
by others [2]., The introdiuction of the phase paraiteter regquires a more
complex formulation that, in principle, may ke represented by the following
relatsion:

6 = o7, [p:2], =}

vhere:
T = tipie spreading
@ o= Lrogulncy smear
2 =2 phase dlustuation
¥ = spatiasl configurabioen

gareranr ol b g fluctoation are enclosed Ltogetner in

interconnecldlon .

WOoonticate o

Feper prosented, not ol Lhe canforance, 0l 0 week lator wo a mezting of
the Comsmicolions Scetion of Lo Slect:ioal Enpinroring depoviment,
iinperial Colles.



Toehanucl s conainoered with attsntian Soiinly

“nbratzd Gik Ghee eve ATLon 03 the phasgo Tiluszluatien of a real acoustic

signoel transmitied throuwsi an underwater Lransmission chapnel and delectad
by a rceceiver at a disriance or 18 miles in an ucean depth o about 200 netires,
The received sipwal may Lo considered as o Sifgnal gencrated by o SLabilized
scillator, ig reality nee perfectly stable, The signal gonerated by such an
ldeal oscillateor may be considered quasi-monocromatic and expressed ag
follaows: ' :

X{t) = At) 'coE[woﬁ + ¢{t))

Wo - = Ffundamenta) angular frequency ' .
A(t; = dpastant aaplitude

G(t_ = instant phase.

The time dependence of A and ¢ 4 the causé of the imperfect monocroma—
ticy [5]. To represent a real phenomenon it is, therefore, convenient to uss
8ignal models depending upon a limited number of parameters,

3. RANDOMNESS

The signal model represents the system oscillator by =mcans of a random funcetion
xit,p), where ¢ is the time andg P is the point of a probability space

P} evidently, this is a statistical model. Generally, one random function
x(t) is said to be of the second order if E[X°(t)] is limited for any t.
Most random Ffunctions are valid only in this case and, in particular, all those
related to spectral decompusition,

These assunptions enable the "instant frequency" of second order to be
introduced into the model, Lut the "instant phase" of such a systen oscillator

is not usually of the same type. The most evident example of phase fluctuatien
is that of Brownian motion,

4. STATIONARITY

The stationarity is not a bProperty that is attainable through experience, since
any physical measurement has finjite duration, The frequcncy-phase relationship
may be formulated as follows:

T
$(t) = g, +fo £(t) dc
it must be noted that if f(t) is stationary, it is not necessarily the same
for #{t); this statement must, however, be accepted in a wide sense, IFf it
is reasonable- to introduce a stationary frequency £{t), with a ncn-
stationary phase #{t), the conclusion is that it is impossible to estabhlish
a phasce-~correlation funeticn, The measvrements are made in finite intcirvals
of time T, introducing a cut frequency of the order 1/7, 71¢ jis thoen
pussible to utililize = stationary model that js observed only during the
time P, '

5. PHASE—FREQUENCY‘RELATIONS"IP 4 -

The cuiput sivnal of the system oscillator is represented by
Z(t,pj = A cos[mot, “e,p)l .

Whatevip the 5taijstical properties of the random function Wi, p), ¥4)  iu

2 rambea function of Lhe Lucund ordor [S]. The. total iasiont rhase o
deduced Crom x4

>

¢ = wet + a(1L)

st

whore  3L) is the nstant pliase,
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For computing the phase increment. we have

~

av

Tery o= B{E) - H{t-a)

Similacrly as in oscillators the instant frequency may be defined as a
derivative of the instant phase,

w(t) = wy+f(t)
where f{t) = é%ﬁ .

is evidently an angular frequency.

The instant frcquency is aot always definable or physically measurable and,
as a consequance, this is also the case for phase $(t).

Fer the measurement of the instant freguency, the phase increment is taken
anto account and the value of the measurement is:

1
£-(t = < ad(t
SO = % pe(e)
provided the ‘instant frequency exists, we haveo

1im ) '
0 fT(t) f{t) ‘

The computation of the phase fluctuation of a real acoustic signal is based
on the properties of the phase in an instant frequency model [5].

6. - EXPERIMENTAL RESULTS

The transmitted signal, composed of a series of pulses of 12 msec length at
=3dB, and of Gaussian shape with carrier frequencies ¢f 750 Hz, 1500 Hz and
2800 Hz, was received at a distance of about 18 miles from the transmitter.
The data used represent those relevant to a direct path, namely the first
arrival. The detected signal was sampled and decomposed in ouadrature in
sin and cos components and recorded on a digital magnetic tape [3].

The instant phasé can then be immediately computed:

B x(t
QiSt = arctang ?%E% .

The instant phasec is given if the preliminary filtering is relatively narrow
banded; the phase value in the wider band is an average phase.

The practical estimation of the phase fluctuation of such a s;gnal [Fig 1]
may be approached by the following procedure-

(i} Data reduction {[Fig 2].
(ii) Selection of first arrival (direct path) [Figs 3a and 4a)..
(iii) Computation of instant phase for real direct path.

(iv) Statistics cver a'large number of direct-path pulses at
varigus frequencies and different periods, represented by
oceanographic parameters [Figs § and 6].

7. CONCLUSIVE CONSIDERATIONS

The evaluation outlined in this paper represenits only the starting point of
a complex preocess initiated zeme years ago. Fluctuation is an up-to-~date
argument a2s shown in tha receont JASA Meetiny at Miami Beach, U,S5.A., in
Dacember 1977. Li:nrt-path evaluation of the phase flocituation has az a
consvquence Ghe volume scattering estimate, From the very firstc abscervaticn
it appears that Lhe phagse fluctuslticon for a direct path is poor and this
result is an agrecment with recent results achieved by other scientists,
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