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PROBABILITY OF A SQUARE LAW DETECTOR WITH INTEGRATORA
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The 900p? of this paper is to present closed form algebraic
approximations for false alarm and detection probability of a
general purpose detector: A square law rectifier followed by a
lowpass filter (integrator) and a binary threshold circuit.

Assuming normal, white bandpass noise and rectangular lownuss
filter results in a yf~distributjon of the rectified, smoothed
noise. Hence, false alarm probability, pf, is given by

pf = ohm] N] (1)

°° v
where Q[yflv] =.§ t;4 expEéldt/(Zir?) ;

N,v=number of degrees of freedom, N=2B/W, “=bandpass bandwidth,
W=lowpaes cutoff frequency,W§B, Ozuth/7 ,7 = mean (dc) voltage
after the rectifier, nth: threshold voltage. Both, the one~ and
two channel version of an envelope detector are described by N=2.

If signal and noise can be aseumed to have the same statis—
tical and spectral properties, distinguished only by their
variance,q:or q: , the distribution function of the rectified
and smoothed signal+noise mixture will be a scaled version of
Eq.1. Hence, detection probability, pd, can be expressed as

pd = Q[N4—%_—| N] I (2)

where x: SSH/5:.

Numerical simulation of sonar operation requires repeated
evaluation of Eqs. 1 and 2, or their inverse forms, @[pf,u]
and X[pd,N,O] . It would be desirable, therefore, to have an
invertable, closed form expreseionforapproximating Q with
negligible error at arbitrary values of all parameters.

A small step into this direction is given with the following
formulas:  



a

errcMgffb) c]
Oldie—integral:

 

~ erfcf:go ] , (3)

1.5 1wherev a = + .256/(((ln N ) — 2.4) + 10 ) ;
_‘
3

b = 4N/(4N-H)' ;

W/ma) ;0 ll

erfc ll complementary error function

(see approximation given below).

The maximum relative error of Eq.3 f including the effects of
the erfc—approximation — is

  

Inserting f =N6 in Eq.3 gives pf according.to Eq.1; similarily,
inserting_9f:NG/(1+X) gives pd.

EQaB can be easily inverted to Obtain
41 I

)
(-XN— : (b + éerfcib} erfcf—bcfl)

erfci: inverse complementary error function
(see approximation below).

(4)

where

2

Ipserting Qrpf in Eq.4 signifies %= 9. Inserting Q=pd signifies
% =9/(1+X), from which X’is readily found.

ROG—curves can now be expressed in closed form (obtained from
inserting e,given by Hq.4,into pd, given by Rq.3 )

pd = F erfc[bc(F—1) + F erfci[pf/F]] , (5)

where ' E = (1+Jfa, and F = erfc[-bc] .  
  

—72<=N $400, 02927, and Q>10.

 

  

 



 

Following Middleton (1) the 'minimum detectable signal" is
the signal—to-noise ratio, X , at the detector input, required
for achieving given pf/pd combination. Therefore, Eq. 5 is
resolved for X :

  

4/,

= be + erfcihgf erfc[—bc]] a" 1 (6)

X be + erfci[pd erch—bcfl .

Sgecial case: The enveloE'e detector:

For “:2 the above formulas take' their simplemost form:

pf = exp[_o] ; I (7)

pd = MPG/(11)] ; 1 ' (a)

pd = rig/(1+3) . (9)

X = 31%??— _ 1 . (10)

ComElementarx error function:

  

Definition °°-

erfcllx] = %§exp[—t]dt . (11)
x ' V

Approximation X g 0: ‘Pbd

erfc[x]={ , y (12)
x < 0: 2 -50[—x1

where \PE21’R’aexpl; z4+1.27 Z2 1+ .1z+ .88 22 .

The maximum relative error is
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Inverse comBlcmentary error functioni

Definition

erfci[erfc[x]] = x (13)

Approximation of y 51 liy]

erfciLy]: -' q“ - (14)
1< y S 2 . —r\i/[2—y1 ,

where'le] = z — 1n 2 — 1 /(1.05— .9522 + .001ln z ) .

The maximum relative error is

 

eifiw < .01 for 10‘18§ z 21 }

Conclusion:

A closed form algebraic approximation for the chi2—Integral has

been presented. It allows to derive_simple formulas for false—

alarm, detection probability and HOG—curves, and to invert these

formulas. All formulas have been programmed and tested on a

pocket calculator ( TI SR—52). In practical application care must

be taken to stay within the range of validity of N,9 and Q, as
specified with Eq.3. Outside this range the approximation errors

can be much worse than the limit of 9¢_indicated above.

It is questionable, however, whether it would be wise to

try to extent the range of validity of 0 and Q, because it would

imply to rely more heavily on the validity of the far—off tails

of-the initially assumed Gaussian distribution of the detector

input.
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ABSTRACT

Telecommunications theory associates a rkaracterizing function, known asthe "scattering function", with the transmission medium of a general
transmis ion channel. Under given boundary conditions, given data rate
rcquirem ts, and with a knowledge of the statistical distributions of
noise c"5) in the time domain, it is possible to define the scattering
function of the meditm and use it to design the optimal signal for such a
Channel. The mathematical model of this Function has been assessed and
experiments in underwater acoustic channels have been made to verify the
feasibility of such a method. However, the scattering function was
expressed only in terms of ' me spreading” and “ :equcncy smear" of the
transmitted nonocromatic signal which, to some extent, proved inadequate
for more g moral and more accurate evaluations. To improVe the definition
of the scattering function it is necessary to introduce also the space and
phase parameters. This paper presents a practical approach for the
estimation of the phase fluctuation of a real acoustic signal after several
miles of travel through the ocean along a direct path. The work described
in this paper was supported by the Italian Navy (MMI) and the Italian
National Research Council (CNR).

   

  

 

1. GENERAL

The scattering function of an underwater transmission channel has been
theoretically studied and experimentally verified [l and 2] and in both
cases certain hypotheses have been assumed in order to match the
"mathematical model“ Wlth the “real physical system” which, in effect, must
be considered as a "quasi-real physical system".

The scattering function is defined as a function of time spreading and
frequency smear:

0(TJCD)_

provided by theWSSUS hypothesis (Wide Sense Stationary Uncorrelatcd
Scattering). A more general definition of such a function, that is closer
to the real physical situation, may be formulated by considering at least
two further parameters of the transmission channel, i.e. the spatial
configuration and the phase behaviour. ' -

A tentative approach to introduce the spatial parameters has been developed
by others [2]. The introduction of the phase paranwter requires a more
complex Formulation that, in principle, may be represented by the following
relation:

  

  

  

  

a = oh.- [cpzé], x)
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kc COHbjdnrcd as a signal nurvt :abilized

scillator, in reality not perfectly stable. The . gnal q aerated by such an
ideal oscillator may be considered quasi—monocromatic and expressed as
follows:

'

 

X(t) w A(t) 'coszofi + §(t)]

where :

we -= fundamental angular frequency
‘

A(t; = instant amplitude
§(t = instant phase-

The time dependence of A and Q is the cause ofticy [5]. To represent a real phenomenon it is,signal models depending upon a limited number of

the imperfect monocroma—
therefore, convenient to use
parameters.

RAHDOMNESS

The signal model represents the system oscillator by means of a random Fanation
x{t,p), where t is the time and p is the point of a probability space
IF]; evidently, this is a statistical model. Generally, one randomx(t) is said to be of the second order if E[X2(t)]Most random Functions are valid only in this caserelated to spectral decomposition.

function
is limited for any t.

and, in particular, all those

These assumptions enable the "instant frequency" of second order to be
introduced into the model, but the "instant phase“ of such a system oscillator
is not usually of the same type. The most evident example of phase fluctuation
is that of Brownian motion.

4. STATIONARITY

The stationarity is not a property that is attainable through experience,
any physical measurement has finite duration. The frequency—phase
may be formulated as follows‘T .

§(t) = 40 +‘]; f(c) dt

it must be noted that if f(t)for ¢(t); this statement must,is reasonablc~to introduce a ststationary phase

since
relationship

is stationary, it is not necessarily the samehowever, be accepted in a wide sense. If itatiouary frequency f(t), with a non—?(t), the conclusion is that it is impossible to establish
a phaScwcorrclauiun function. The measurements are made in finite intervals
of time T, introducing a cut frequency of the order 1/T. It isstationary model that is observed only dur

then
possible to utililize a

in; the
time T.

5. PHASE—FREQUENCY RELATIONSHIP ' '
The output signal of the system oscillator is represented by

1(t,p) ; A cos[mot, §(C:P)] °
Whatewrw' the st“;
J   :rtics of" the random function 9(txp);~ Luaund order [5]. Thu.total instant phafie

 

wot + %(L)

1:E‘(:;'tz is the instant “hu““
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For c '32:th ing‘ the phase increment we have

In \ ..
A=\V:TJ - 5it) n 5(3 ‘T) . ~

Similarly as in oscillators the instant frequency may be defined as a
derivative of the instant phase.

w(t) = we +£(t)

d
when: f(t) =

is evidently an angular frequency.

The instant frequency is not always definable or physically measurable and,
as a consequence, this is also the case for phase '¢(t).

For the measurement of the instant frequency, the phase increment is taken
into account and the value of the measurement is:

. .s .1.9+0.) — {3(a)

provided the instant frequency exists, we have

lim I .
frao fT(t) f(t) .

The computation of the phase fluctuation of a real acoustic signal is based
on the properties of the phase in an instant frequency model [5].

6. EXPERIMENTAL RESULTS

The transmitted signal, composed of a series of pulses of 12 nISeclength at
—3dB, and of Gaussian shape with carrier frequencies of 750 Hz, 1500 Hz and
2800 Hz, was received at a distance of about 18 miles from the transmitter.
The data used represent those relevant to a direct path, namely the first
arrival. The detected signal was sampled and decomposed in quadrature in
sin and cos components and recorded on,a digital magnetic tape [3].

The instant phase can then be immediately computed:

_ x:
QiSt — arctang ?{E% .

The instant phase is given if the preliminary filtering is relatively narrow
handed; the phase value in the wider band is an average phase.

The practical estimation of the phase fluctuation of such a signal [Fig 1]
may be approached by the following procedure: *

(i)v Data reduction {Fig 2].

(ii) Selection of first arrival (direct path) [Figs 3a and 4a].-

(iii) Computation of instant phase for real direct path.

(iv). Statistics over a'large number of_direct—path pulses at
various frequencies and different periods, represented by
oceanographic parameters [Figs 5 and 6].

7. CONCLUSIVE CONSIDERATIONS

The evaluation outlined in this paper represents only the starting point of
a complex proc ss ini ted some years ago. Fluctuation is an upmto—date
argument: as in t JASA Mect1.g at Miami ch, U.S.A:, in
eccmbcr 1977. ElPCLC-pdth evaluation of the phase El tuation has as a

consequence the volume scatteri: " estimate. From the very first observation
it appears Lhat the p. 'c fluctua ion for a direct path is poor and this

     

     

 

result is in agreement with recent results achieved by other scientists.
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