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Mechanics modeling for joints is a challenging problem for the complex multi-scale, 

multi-physics, nonlinear behaviors of contact interface of the assembled structure. In 

this paper, the dynamic governing equations of vibration system are conducted with 

considering the nonlinear stiffness and damping of the joint interface. An improved 

MHBM (multi-harmonic balance method, MHBM) is then used to analyze the steady-

state dynamic response under the periodic loading in time-frequency domain. The pro-

posed method is verified by a comparison with the direct numerical integration solution, 

and the effect of the nonlinear parameter and periodic exciting frequency is also investi-

gated. The results show that the solutions solved by the proposed harmonic balance 

method agree well with the direct numerical integration solution. With the increase of 

the nonlinear parameter, the amplitude of the steady-state response will become smaller, 

and larger exciting frequency will also induce smaller amplitude of displacement and 

less area of hysteresis curve.  
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1. Introduction 
The problems of contact and friction modeling for of joint interface are of fundamental im-

portance in structural dynamics [1-3]. The existence of complex multi-scale, multi-physics and non-

linear behaviors of joint interface is mainly response for the complex dynamics of the assembled 

structures. Modeling for joint interface is critical in the design, control and optimization of mechan-

ical engineering systems [4]. 

One of practical methods for simulating the nonlinear mechanics of joint interface is employing 

the deduced-order physics-based models instead of the build-up structure. In this method, develop-

ing the physics-based constitutive models for the joint interface is a preparation for the dynamic 

simulation and prediction. The constitutive models should reproduce the typical nonlinear behaviors 

of joint interfaces [5, 6]. Several appropriate contact models have been proposed to simulate the 

stick-slip behaviors [5, 7-12]. Among them are so called stick-slip frictional models, which allow 

partial slip in contact area of joint interfaces. The Iwan model is commonly used to model the mi-

cro-slip behaviors and consists of an array of parallel springs in series with sliders called Jenkins 

elements [13, 14]. Other frictional models are also used to describe the smooth transition from stick 

to micro-slip and macro-slip, such as the LuGre bristle friction model, Dahl model, Valanis model 

[1, 2, 10]. Compared with other constitutive partial slip models, Iwan model can describe the micro-

slip of mechanical joint interface better, and the parameters of Iwan model are almost physics-based. 
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Therefore, the Iwan model has been widely used by many researchers to describe the sliding behav-

iors, such as Quinn [15], Deshmukh [16], Miller [17].  

The aiming of this paper is to develop a modified Iwan model that is capable of describing the 

nonlinear softening stiffness and hysteresis behaviors of joint interfaces, which is considered to 

conduct the governing equations of vibration system. The multi-harmonic balance method is used to 

analyze the steady-state dynamic response under the periodic loading in time-frequency domain. 

The proposed method is investigated by a comparison with the direct numerical integration solution, 

and the effect of the nonlinear parameter and periodic frequency is also investigated. 

2. Contact forces 
The nonlinear partial-sliding behaviors of joint interface are modeled using the parallel-series 

Jenkins elements. Figure 1a) shows the geometry of lab-type joint interface. The up moved part 

connected to a fixed part with several parallel-series Jenkins elements consistent of spring-slider 

units, called Iwan model shown in figure 1b). Every Jenkins element has a same stiffness ki=k/n 

with a different critical sliding inception force qi, i=1…n. Where n is the number of sliders, and k is 

the total of slipping stiffness. When the tangential load is small, most of sliders keep stick, and the 

rest sliders will slip for the recycle force of these springs is larger than sliding inception qi, called 

micro-slip. With the increase of the tangential load, more and more sliders start slipping till all slid-

ers slip, called macro-slip. 
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Figure 1 schematic of joint: a) lab-type joint interface, b) Iwan model 
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Figure 2 schematic of modified Iwan model: a) modified Iwan model, b) hysteresis curve 
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Figure 3 recycle force of joint interface for unloading and reloading process 
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The Iwan model can well describe the nonlinear stick-slip behaviors of joint interface, but ig-

nore the residual stiffness of the macro-slip. The Iwan model with an additional adjusted spring 

k=k shown in figure 2a), is applied to describe the residual stiffness of joint interface during the 

macro-slip.  

A uniform distribution of critical sliding force is proposed as 

1
0 2

2( )
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q

q

q f
fq

else
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

     (1) 

where, fq is the ultimate slipping force when all of the Jenkins elements slip. 

The recycle force of all Jenkins elements can be calculated by  

0

( ) ( ) ( )
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           (2) 

Substituting Eq.(1) into Eq.(2) yields 
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       (3) 

The first part of Eq.(3) is the contribution of Jenkins elements, and the second part is additional 

adjusted spring’s linear recycle force, αkx. 

In Ref. [6, 9, 18, 19], the parallel-series Iwan model satisfies the Masing hysteresis condition, 

shown in figure 3. When the joint interface is subjected with oscillatory loading, the recycle force of 

reloading and unloading process is defined according to the amplitude of recycle force F0 as 
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      (4) 

where, x0 denotes the amplitude of relative displacement, related to the amplitude of recycle force 

F0 and defined as  
 

0 0( )F F x        (5) 

By substituting Eqs. (1)(2)(5) into Eq.(4), the recycle forces of reloading and unloading process 

are given by 
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    (6) 

3. Nonlinear solution methods  
The dynamic governing equations of vibration system in time domain are established with the 

consideration of the local nonlinear behaviors of joint interface, defined as 

n ( , , ) ( )t t  m x +c x +k x = f x x +f       (7) 

where, m、c、k are separately the mass, linear damping and stiffness matrices. x is the response vector of the 

system degrees of freedom. fn is the vector of the nonlinear contact force of joint interface. f is the vector of the 

external force. 

 The steady-state response in time domain can be reached by the multi-harmonic balance 

method and defined as 
H

(0) (h)

h 1

(t) ih te 



 
   

 
x x x       (8) 

In this method, the nonlinear contact force and external force are also expressed as a series of 

harmonic terms. 
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where, H is the number of harmonic terms. (h)

nf ,  h
f  and  h

x  are the Fourier coefficient. 

Substituting Eqs.(8)(9) into Eq.(7), and transforming Eq.(7) into frequency domain yields 

 

(0) (0) (0)

n

2 ( ) ( ) ( )

n

h h hh i h 

  

           
 

k x f f

m c k x f f
       (10) 

where, 
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With the results of steady-state response vector in frequency domain, the vector of the velocity 

can be given by 
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The interval of the discrete frequency is related to the external oscillatory frequency fe. 

2 en f        (13) 

where, n is the discrete number per cycle, n>10. 

The main steps of the algorithm for getting the steady-state solution x(t) is summarized as fol-

lows:  

① Calculate the steady-state solution x(t) of linear system by Eq.(11) without considering the non-

linear contact force fn in Eq.(8), and get the velocity by Eq.(13). 

② Calculate the nonlinear contact force fn in time domain, and transform it to frequency domain by 

fast Fourier transforming. 

③ Calculate the steady-state solution x’(t) by Eq.(11) once more, and also get the velocity by 

Eq.(13). 

④ Calculate the error by comparing the steady-state solution of x(t) and x’(t). 

   

 

t t

t


 

x x

x
     (14) 

⑤ Remark the error, if Δ<0.01, stop calculating and export the results of step ③, else goto the step 

② and recycle the following steps till the error Δ less than 0.01. 

4. Dynamic governing equation  
x

m
asin(2πft)

asin(2πft)

asin(2πft)

P

stick slipslip

 

Figure 4 schematic of lap joint: a) contact area of stick and slip, b) simplified jointed structure 

When the jointed structure is forced by the normal and oscillatory tangential load synchronous-

ly, the contact area can be divided into stick and slip zones shown in figure 4, for the un-uniform 

distribution of contact stress. The modified Iwan model in Section 2 is applied to describe the non-

linear behaviors of joint interface. Substituting Eqs.(3)(6) into Eq.(7), the dynamic governing equa-

tions of lap joint system under oscillatory loading are defined as 

   /1 ( , , ) sin 2s s u lmx cx y kx y f x x t a ft             (15) 
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where, ys is the proportional coefficient of linear and nonlinear contact force, related to the residual 

stiffness coefficient , ys[0,1]. fu/l denotes the recycle force of unloading and reloading process. a 

is the amplitude of external exciting force, and f is the frequency.  

 Transforming Eq.(15) into dimensionless set, the governing equations is multiplied by (k/mfq). 

   2 2 /2 1 sin 2u l

s s

q q q q q

fk k k k
x x y x y a ft

f f f f mf
               (16) 

where, ω=(k/m)
1/2

, 2ξω=c/m。 

The dimensionless contact force Eq. (3) is given by 
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where, / qy kx f . 

 Substituting Eqs.(4)(17) into Eq.(16) yields 
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where, a  is the dimensionless amplitude of external exciting force,

 
/ qa ka mf .  

The dimensionless contact force of reloading and unloading process is given by 
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where, y0 is the maximum dimensionless response. 
0

nonf  is the maximum dimensionless recycle 

force, 
0 1nonf  , related to y0. 

 

For Eq.(17), the maximum dimensionless contact force is 1. As a result, the recycle force of re-

loading and unloading process predicted by Eq.(19) is also less than 1. Hence, Eq.(19) is only suita-

ble for micro-slip, and the recycle force of macro-slip is defined as  

 
/

1 0

1 0
u l

y
f

y
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       (20) 

5. Results and discussion 
5.1 Method investigation  

In order to validate the proposed multi-harmonic balance method in time-frequency domain, the 

response of vibration system with the consideration of the nonlinear behaviors is calculated and 

compared with the direct numerical integration solution. Firstly, the iteration results are shown in 

figure 5, and the simulated parameters are listed as {ω=1，ξ=0.02，ys=0.2，ā=20，f=0.5}. 
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Figure 5 iteration results of proposed MHBM 
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Figure 5 depicts the steady-state displacement response of 13 iteration cycle. With the increase 

of iteration cycle, the steady-state response of displacement is convergent till the results satisfy the 

accuracy. In this paper, the iteration accuracy is 0.001 calculated by Eq.(14). What’s more, the ac-

curacy of the proposed method is verified by comparison of displacement, velocity and recycle 

force with the direct numerical integration solution, shown in figure 6.  
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Figure 6 comparison of steady-state response between proposed MHBM and direct numerical integration 

solution: a) displacement; b) recycle force; c) velocity d) recycle force and displacement 

The steady-state response is extracted to investigate the precision by a comparison between the 

proposed MHBM and direct numerical integration solution shown in figure 6. The results, including 

displacement response, velocity and recycle force agree well with the direct numerical integration 

solution. As seen from the relation between the contact force and response shown in figure 4d), with 

the increase of displacement response, the slop of curve become less and less, inducing a softening 

stiffness of joint interface. 

5.2 Parameters investigation 

The effect of the nonlinear parameter ys and exciting frequency on the steady-state response is 

also investigated. The steady-state response with different nonlinear parameter ys and the recycle 

force with different exciting frequency are separately shown in figure 7 and 8.  
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Figure 7 effect of nonlinear parameters on steady-state response: a) displacement, b) velocity 
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Figure 8 effect of oscillatory frequency on contact force of joint interface 

Figure 7 expresses the effect of the nonlinear parameter on steady state displacement and veloc-

ity. As seen from figure 7, larger nonlinear parameter ys will induce smaller displacement amplitude 

and velocity amplitude, but more cycle number of iteration. The cycle number of iteration at ys=0.1 

is 4, while the iteration cycle number is 65 for the case at ys=0.35. Figure 8 depicts the oscillatory 

frequency on the relation between the contact force and steady-state response. As the oscillatory 

frequency increases, the amplitude of the steady-state displacement becomes smaller, result in less 

area of the hysteresis curve and less energy dissipation per cycle. 

6. Conclusion 
In this paper, the modified Iwan model is applied to describe the nonlinear behaviors of joint 

interface, which is used to conduct the governing equations of vibration system. The multi-

harmonic balance method is used to get the steady-state response of jointed structure under oscilla-

tory loading in time frequency domain. The proposed harmonic balance method is verified by a 

comparison with the numerical integration solution, and the effect of the nonlinear parameter and 

periodic frequency on the nonlinear behaviors of joint interface is also investigated. The results 

show that the solutions solved by the proposed harmonic balance method agree well with the direct 

numerical integration solution. With the increase of the nonlinear parameter, the amplitude of the 

steady-state displacement and velocity will become smaller. As the periodic frequency increases, 

the amplitude of displacement will become less, inducing less area of hysteresis curve and less en-

ergy dissipation per cycle. 
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