THE LOCAL ENVIRONMENTAL CORRECTION FOR EMISSION SOUND PRESSURE MEASUREMENTS TO BECOME A STANDARDIZED METHOD

W. Probst (1), G.A. Sehrndt (2), H. Lazarus (2)

(1) ACCON GmbH, Gräfelfinger Str. 133 A, D - 8000 Munich 70, Germany

(2) Bundesanstalt für Arbeitsschutz, Postfach 17 02 02, D - 4600 Dortmund 1, Germany

1. DETERMINATION OF THE LOCAL ENVIRONMENTAL CORRECTION K3

The method of the local environmental correction (K_3) for a position (j) in the vicinity of a source has been based on the assumption for an ordinary room with a directional source that the particular sound pressure level $L'_{j=k}$ at a specified position k may be imagined as a superposition of

the sound pressure level of the diffuse field L_{diff} produced by the total sound power of the source which is only dependent on the equivalent absorption area (A in m³)

 $L'_{i} = L_{W} - 10 \lg (4/A)$ 1)

- the sound pressure level in the free field $L_{i=k}$ produced by the sound energy radiated in the direction of the respective position k.

This superposition may be written as

$$L'_{i=k} = 10 \lg (10^{0.1L} j = k + 10^{0.1L} diff)$$
 2)

or also
$$L_{j=k} = L'_{j=k} + 10 \lg (1 - 10^{0.1} L_{diff} / 10^{0.1} L'_{j=k})$$
 2a)

As the sound power L_W can be calculated from N sound pressure level measurements L_1 on a measuring surface S (in m^2), added by L_S and corrected by the measuring surface related or average environmental correction K_2 , the following applies:

$$L_W = \overline{L}_i' + L_S - K_2$$
 with 3)
 $\overline{L} = 10 \lg \Sigma (10^{0.1} L_i')/N$; $L_S = 10 \lg S$; $K_2 = 10 \lg (1 + 4S/A)$.

A position related or local environmental correction K3 may be defined as

$$K_3 = L'_{i=k} - L_{i=k}$$
 4)

and using equation 1, 2 and 4, K3 can be written as

$$K_3 = -10 \lg \left[1 - \left(\frac{1}{(1 + A/4S) \cdot 10^{0.1} \left(\overline{L}_i - L_j = k \right)} \right) \right]$$
 5)

Using the reference source method for determining the average environmental correction K_2 , equation 2) may be written as follows:

$$K_3 = -10 \lg \left[1 - \left(1 - 10^{-0.1 \text{K}_2}\right) \cdot 10^{0.1 \left(\overline{L'_i} - L'_{j=k}\right)}\right]$$
 6)

euro•noise '92

THE LOCAL ENVIRONMENTAL CORRECTION

To facilitate the determination of the local environmental correction K₃ the diagram of figure 1 as shown in Probst [1] and Sehmdt, Lazarus, Probst [2] should be used.

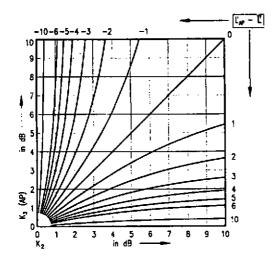


Fig. 1

Diagram for the determination of K₃ at the position (j = k = AP) with

$$L'_j - \overline{L'}_i = L'_{AP} - \overline{L'}_i$$

K₂ from ISO 3744

Because of doubts in the precision of the method its use - and the diagrams - are limited to $K_3 \le 7$. This could be inconvenient especially for the determination of emission sound pressure levels at specified positions near large machinery. The sensitivity of equation 5 or 6 against deviations from the true value of the difference $L'_{i-}L'_{i=k}$ and its relation to the value of K_2 will be shown by some experiments. Nevertheless the K_3 -method is to be preferred to the use of the average environmental correction K_2 for single position measurements.

In the following experiments the specified position (j) lies on the measurement surface (i), therefore is i=j.

2. EXPERIMENTS

First investigations of the possibilities to apply the local environmental correction included rooms with average environmental corrections K2 ranging from 0.1 to 2.7 dB as shown by Sehrndt, Lazarus, Probst [2]. In the meantime experiments have been carried out in rooms with K2 larger than 1.0 dB and with the same model source, a tapping machine in an asymmetrical housing, producing distinct directivity, Fig. 2.

THE LOCAL ENVIRONMENTAL CORRECTION

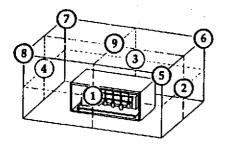


Fig. 2

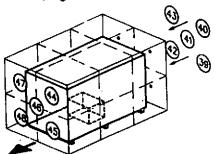
Model machine with main radiation direction to microphone position 1 measuring distance 1 m from Probst [1]

The differences of the sound pressure levels L_i' of the positions 1, 2 and 3 determined in different rooms versus the levels L_i' of the same positions in an hemianechoic room are shown in table 1 as $K_{3meas} = L_i' - L_i$. Table 3 shows the mesured K_{3meas} , the difference L_i' - L_i' , used as basis for the calulation of K_3 following equation (6) and fig. 1 and K_3 .

<u>Table 1:</u> Average of the measured sound pressure level $(\overline{L'_i})$ on the measuring surface; differences (K_{3meas}) of single position levels L'_i measured in different rooms versus the levels L_i in an hemianechoic room for the model machine of Fig. 2 (tapping machine partly enclosed); measuring distance 1 m, averaging time 30 s; difference L'_i – $\overline{L'_i}$; K_3 calculated from L'_i – $\overline{L'_i}$; with equation (6); (K_2) see Table 2)

Room No.	L'i in dB	K _{3meas.} in dB			$L'_i - \overline{L'}_i$ in dB			K ₃ in dB		
		MP 1	MP 2	MP 3	MP 1	MP 2	мР 3	MP 1	MP 2	MP3
1	104.0	.3	4.3	6.6	5.6	-2.8	-5.1	.3	2.5	5.8
2	106.2	-1.1	8.9	12.5	2.0	4	-1.4	1.6	3.2	4.7
3	104.3	.7	3.8	7.5	5.7	-3.6	-4.5	.3	4.3	6.4
4	106.2	. 1.7	7.3	11.0	3.8	-2.0	-2.9	.7	6.1	10.0
5.	105.3	2	6.6	10.1	4.2	-1.8	-2.9	.7	4.0	6.4
6	102.6	.1	1.8	6.0	6.8	-3.9	-4.3	.2	3.5	4.1

euro•noise '92


THE LOCAL ENVIRONMENTAL CORRECTION

Since the standard proposal limits the calculation of local environmental correction K₃ to 7 dB, doubts may arise if some of the results for position 2 and most of position 3 could be corrected according to the standard. To determine the accuracy of the K₃-method, Table 2 shows the differences between environmental corrections determined according to the reverberation time method and the proposed calculation procedure according to equation (6) and the true value K_{3 meas}.

<u>Table 2</u>: Differences between environmental corrections determined according to the reverberation time method (K₂) and the calculation procedure (K₃) and the true value K_{3meas}. Model machine of Fig. 2

			K ₂ -K	3meas	in dB	K ₃ -K _{3meas.} in dB			
No.	room lxbxh in m	K ₂ in dB	MP 1	MP 2	MP3	MP 1	MP 2	MP3	
1	28x20x6	1.1	.8	-3.2	-5.5	0	-1.8	8	
2	26x8x4	2.8	3.9	-6.1	-9.7	2.7	-5.7	-7.8	
3	22x25x6	1.4	.7	-2.4	-6.1	4	.5	-1,1	
4	15x12x6	2.8	1.1	-4 .5	-8.2	-1.0	-1.2	-1.0	
5	26x10x6	2.2	2.0	-4.4	⊣7.9	.5	-2.6	-3.7	
6	36x18x8	1.1	1.0	7	-4.9	.1	1.7	-1.9	

For the positions 1 and 2 an advantage of the K₃ method is clearly shown, but for position 3 the limits of the method are becoming obvious, even then, the K₃-method shows better agreement than the K₂-method. Therefore further experiments have been started, with the aim to show the application for relative large machines. The model source consists of an asymmetrical hood into which a loudspeaker radiates broad-band pink noise, Fig. 3

Fig. 3 Model machine with main radiation direction to the five microphone positions 44 to 48 (microphone area 1), measuring distance 0.2 m. Microphone positions 39 to 43 on the opposite side (microphone area 3; comparable with position 3

of a nine positions parallelepiped)

THE LOCAL ENVIRONMENTAL CORRECTION

<u>Table 3:</u> Sound pressure level measurements L_i , L_i^{\prime} in octave bands in different rooms, i.e. free field (FF), reverberant (RR) with 9.0m x 6.9m x 3.9 m and small (SR) with 4.5m x 2.5m x 2.5m, averaged over 5 positions in the measuring areas (MA) 1 and 3, together with corrections $K_{3\text{meas}}$, K_2 and K_3 in dB, K_3 calculated from $L_i^{\prime}-L_i^{\prime}$ with equation 6. Model machine of Fig. 3 (loudspeaker partly enclosed), measuring distance 0.2 m (K_3 is not calculated for MA3 because of its high values).

			octave band with center frequency in Hz							
мА	room	L or K in dB	125	250	500	1k	2k	4k	8k	
1	FF	ij	85.4	83.9	84.3	80.8	79.5	80.6	83.2	
	RR	L' _i	89.6	87.0	86.2	82.6	80.1	81.6	83.6	
	RR	Ī,	86.3	84.0	81.9	78.3	74.4	75.0	75.2	
	SR	L'i	85.5	86.8	86.2	82.4	80.7	81.6	83.7	
	SR	$\Gamma_{\mathbf{i}}$	82.8	82.9	81.5	77.4	74.8	75.6	76.7	
	RR	K _{3meas.}	4.2	3.1	1.9	1.8	.6	1.0	.4	
	RR	K ₃	2.2	2.3	1.6	1.6	1.0	.7	.3	
	SR	K _{3meas.}	.1	2.9	1.9	1.6	1.2	1.0	.5	
	SR	Кз	2.6	1.9	1.5	1.3	1.0	.9	.7	
3	FF	Ч	69.5	69.0	63.1	56.4	54.7	56.4	49.5	
	RR	Ľį	86.5	83.9	80.8	76.7	71.8	71.2	67.7	
	SR	Ľį	81.4	80.5	78.1	74.2	71.0	71.1	70.5	
	RR	K _{3meas.}	17.0	14.9	17.7	20.3	17,1	14.8	18.2	
	SR	K _{3meas.}	11.9	11.5	15.0	17.8	16.3	14.7	21.0	
all	RR	К2	8.1	7.6	7.9	7.7	6.7	5.1	3.2	
	SR	К2	8.3	8.9	8.5	7.2	6.7	6.5	6.0	

Whereas experiments with different measuring distances have been finished, the results for d = 0.2 m should be shown here. For comparison, positions 1 and 3 are replaced by an area of five positions according to the standard rule of ISO-3744 [3] not to choose

euro•noise '92

THE LOCAL ENVIRONMENTAL CORRECTION

measuring subsurfaces of larger dimensions than three times the measuring distance. The results of the sound pressure level measurements are shown in table 3 together with the correction K_{3meas} , K_3 and the average environmental correction K_2 .

Table 3 shows that the term "large machine" depends more on the relation of its dimensions to the dimensions of the surrounding room than on the relation to human or so-called "absolute" dimensions.

Other configurations, mainly a model machine operating in front of an reflecting wall in an otherwise free-field surrounding, are under investigation.

3. DISCUSSION

The results show that the calculation procedure proposed for the local environmental correction K3-method is most suitable to determine the corrected sound pressure level at a specified position, especially for regions in the main radiation direction of a "large" machine. In relation to the directivity height of the machine, K3 can be smaller or larger than the average environmental correction K2, thus providing values which are more true than those of K2. The results show that apporximate methods for K3 which do not consider information on the directivity systematically deviate from the true value. The term "large" machine considers only the relations between the dimensions of the machine, the measuring surface and the room, but not the "absolute" dimensions. Because in case of "large" machines the environmental correction K2 is large, the calculation procedure for the local environmental correction K3 has tight limits in the minimum radiation area of a source.

4. ACKNOWLEDGEMENTS

Parts of this investigation were funded by the Federal Institute for Occupational Safety and Health, Germany.

5. REFERENCES

- [1] Probst, W.: Geräuschemissionswerte, Statistische Berücksichtigung von Meßungenauigkeiten, Raumeinfluß, Produktionsstreuung. Forschungsbericht Fb 399 der Bundesanstalt für Arbeitsschutz, Dortmund 1985.
- [2] Sehrndt, G.A., Lazarus, H., Probst, W.: Experience with the application of environmental corrections. Proceedings Inter Noise 1991; p. 1005.
- [3] ISO 3744.
- [4] Sehrndt, G.A. & H. Lazarus: Accuracy of noise emission values determined at the working place. Proceedings Internoise 90, p. 649.
- [5] Probst, W.: Bestimmung der Geräuschemission großer Maschinen mit einfachen Verlahren. Forschungsbericht (in preparation) der Bundesanstalt für Arbeitsschutz, Dortmund 1992.