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1. INTRODUCTION

This paper contains simulated and experimental results for an optimal time-domain beamformer that

determines multiple source bearings and time series by arameter optimization [1.2]. The

development of this signal processing method was motiva by an analogous frequency-domain

method [3]. Simulated annealing [4-7] is used to search for the best leaSI-squares fit to the data

over all possible source bearings and time series. Due to improvements in the optimization

procedure, the current version of the optimal beamforming algorithm converges faster than the

version described in [1,2].

2. OPTIMAL BEAMFORMING

A linear array of N equally-spaced hydrophones receives M planecwave signals with time series

p,,,(r). The signal measured at the nth hydrophone is

mr) = 2Z=lpm(r—nrm)+\vn(z), (1)

where 1,, is the delay corresponding to the hydrophone spacing and the bearing of the mth source.

The noise time series Wu“) may consist of a combination of white noise. ambient noise, signals

from other sources, and other types of noise. The replica pressure at the nth hydrophone is defined

in terms of the test time series q,,,(t) and test delays 6,, by

gun) = zilqmo— no“) . (2)

An optimal estimate of the bearings and time series is obtained by minimizing the following energy

function over all possible sets of test parameters:

2
5(41v0'1.02.0'2.---.4MJM) = [Pn(l)- Q,.(l)] d1. (3)

We solve this optimization problem. which may involve thousands of unlmowns after discretizing

in time. using simulated annealing. Optimal beamforming is practical with this Monte Carlo

method, which is analogous to the cooling of a liquid to form a perfect crystal. An artificial control

parameter that is referred to as the temperature is lowered slowly throughout the search process.
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OPTIMALBEAMFORMING

The solution for the bearings and time series that minimizes the energy is not unique. In the noise-
free case with two sources, for example, the energy vanishes for

410) = p1(t)+f(t). ' (4)

qzo) = p20) - f0) . (5)

where f(t) is an arbitrary function (including arbitrary amplitude) of period 1'1 — 12. This
ambiguity may be removed by imposing an additional constraint. In simulations. it is possible to

suppress the ambiguity by using signal time series that have compact support so that f(t) vanishes
[1]. Other approaches are required for processing real data.

Since the ambiguous function represents a correlation between the source time series, it may be
suppressed for long time series by minimizing the source correlations [2]. Due to the high
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FIG 1. Left: The hydrophone data for the example involving five sources. Right: The recovered
time series (solid curves) and the true tine series (dashed curves).
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FIG 2. The bearings and energy ofthe simulated annealing search for the example involving five
sources. Left: The original search algorithm. Right: The improved search algorithm.

dimension of the parameter space, however, it is not practical to implement this approach with
Lagrange multipliers. Furthermore. it is often desirable to apply the optimal beamformer to short
time series. Fortunately, there is a simple way to minimize the source correlations that works even
for short time series. With the simulated annealing algorithm described in [1,2]. the source

correlations may be approximately minimized by terminating the search process when the source
bearings lock in and the energy stabilizes at a low value. With the improved search algorithm
described in the following section. it is not necessary to terminate the search process to prevent the
ambiguity from growing.

3. AN IMPROVED SEARCH AIflORlTl-IM

Simulated annealing searches for the global minimum of the energy through a sequence of
iterations in which the unknown parameters are perturbed. In the standard form of simulated
annealing, perturbations that decrease the energy are always accepted and perturbations that
increase the energy are accepted according to a Boltzmann probability distribution to allow escape
from local minima [4-7]. The performance of the optimal beamforrner has been improved by
applying the standard acceptance criteria for the source bearings while accepting time series
perturbations only if the cost function decreases. This search algorithm can escape from local
minima in the bearings. There are no local minima in the time series because the energy function is
a parabola in each ofthe time series parameters.
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With this search procedure, the periodic ambiguity does not grow after the bearings have locked in.
This can be a significant advantage. especially if several sources are present. We illustrate the
improved search algorithm with anexample from [1,2] that involves five simulated Gaussian

' signals and seven hydrophones. The hydrophone data and recovered time series appear in Figure
1. The Markov processes of bearing estimates appear in Figure 2 for the original search algorithm
of [1,2] and for the improved search algorithm. The improved algorithm converges much faster.
The time series recovered using the improved algorithm and the true time series appearing in Figure
l are in excellent agreean

Like all signal processing methods, the optimal beamformer has difficulty detecting weak signals .
that are hidden by strong signals. To reduce this limitation. we first apply the optimal beamformer
to determine the parameters of the strong signals and subtract these time series from the
hydrophone data. The optimal beamformer is then applied to search for signals in the reduced data.
We refer to this approach as fractional annealing. Time series extracted by fractional annealing
appear in Figure 3. The optimal beamforrner was first applied to extract the two loud sources. Note
that a small periodic ambiguity is visible in the region where the true signals vanish. The quiet
source was then extracted from the reduced data. All three of the sources are accurately recovered.
This approach has also been applied successfully to real data.
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FIG 3. Recovered time series for the fractional annealing example.

4. 'IOWED ARRAY DATA

The optimal beamformer has been used to process data from an array of hydrophones towed
behind a ship in the Atlantic Ocean. To eliminate 180 Hz noise from the data. we used the
following generalization of Eq. (2):

(2,0) = Ansin(a)r + ¢) + 2"“:1q,,,(r—na,,,) , ' (5)
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where a) = 3601: s". The phase ii and the amplitudes A,l are added to the parameter search space.

Since electromagnetic waves travel much faster than sound waves. ¢ is assumed to be independent

of n.

An example of some processed data appears in Figure 4. It was assumed that the data contains

signals from the tow ship and from two other ships. A large conuibution from the 180 Hz noise is
evident in hydrophone 6. The algorithm converged to the tow ship direction and to bearings that

were confirmed to correspond to two other ships. The replica and true hydrophone data are in

excellent agreement. The tow ship signal is the top source time series in Figure 4.
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FIG 4. Results for the example involving real data. Left: The best replica hydrophone signals
(solid curves) and the data (dashed curves). Right: The recovered source time series.

5. CONCLUSION

The simulated annealing search algorithm for the optimal beamformer has been improved. The
improved algorithm converges faster than the original algorithm. Fractional annealing is a useful
generalization of the optimal beamforming algorithm for detecting weak signals. The optimal ‘
beatnformer also performs very well for real data
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