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1. INTRODUCTION

Khuliel' and Shabana [1], proposed a method for the dynamic analysis offlexible multibody sys-
tems with intermittent motion. The jump discontinuities in the system velocities and reaction
forces are predicted using the generalized impulse momentum equations that involve the coefi-
cient of restitution and the Jacobian matrix of the kinematic constraints. The validity of using
the generalized impulse momentum equations in the impact analysis of constrained deformable
bodies has been examined both theoretically and analytically by Rismantab-Sany and Shahana
[2]. The convergence of the series solutions obtained by solving the generalized impulse momen-
tum equations was used to prove the validity of using these equations in the impact analysis of
constrained deformable bodies. Yigit, et al. [3], examined experimentally the validity of using
the impulse momentum equations. Their experimental results were in a good ayeement with
the numerical results obtained using the impulse momentum equations. They concluded that the
generalized impulse momentum equations can be used with confidence to study impact problems
in constrained deformable bodies.

The objective of this investigation is to examine the effect of the finite rotational displacement on
the velocity of propagation in constrained elastic systems. The system difl'erential equations of
motion are developed using the principle of virtual work in dynamics. The jump discontinuities in
the system generalized velocities as the result of impact are predicted using the impulse momentum
equations that involve the coefficient of restitution. The impact-induced wave motion is analyzed
using Fourier method. The series solution obtained in this paper is written as the sum of transient
and steady state solutions. The use of the procedure described in this paper is demonstrated using
a radially rotating rod which is subjected to an axial impact.

2. DYNAMIC EQUATIONS

In this invostigation the radially rotating rod shown in Fig. 1 is used to examine the effect of
the finite rotation on the propagation of the impact-induced longitudinal elastic waves. Using the
principle of virtual work in dynamics and assuming the angular velocity of the rod is specified
and constant, the differential equations of motion of the rod i can be written as [4]

Miti'li + (Ki! — “I’M-11W =U’ii: (1)
where w is the angular velocity of the rod and Nqu and Ki, are, respectively, the mass and
stiffness matrices of the rod which can be evaluated using the assumed shape function. The
matrices M}! and K}, and the vector i, are given by
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where m‘ , a, l, and E are the mass, cross sectional area, length, and the modulus of elasticity of

the rod, and n is the total number of vibration modes.

3. IMPACT ALGEBRAIC EQUATIONS

3.1 Impulse Momentum Equations 4

Figure 1 shows a mass m1 that moves along the axis of the rod with a constant velocity W.

This mass is assumed to impact the free end of the rod axially at time t = 0. If the geometry

of impacting surfaces and friction between the two impacting bodies are not considered, the

generalized impulse momentum equations of this system is given by [l]

M L. as _ o
in: oiiai-H (3’

where M is the system mass matrix which is defined as

M o_ I!
M ‘ l 0 mil (4)

in which I.“ is the change of the penetration in the direction of the common normal at the point

of impact with respect to system generalized coordinates 41, At} is the jump in the velocity vector.

H is the generalized impulse, and ‘
v=—(1+¢)V’ (5)

in which 2 is the coefficient ofrestitution.

By solving Eq. 3, the jump discontinuities in the velocity vector can be written as

 

" A _ +1

Aq: (2:231 =H[,yn'(__l,_r t:1,2,.t.,n (6)
ml

where the generalized impulse H is given by

_., I. _
= u + 2n": (1)
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in which [I is the mass ratio defined as

H = - (5)

3.2 Solution of the Differential Equations
By using Eq. 6I the initial conditions for the difi'erential equation of Eq. 1 as the result of the
axial impact are defined as

wont =0, [anon = (A6). =2§(—1f“, k = 1.2,....n (9)

By using these initial conditions. Eq. 1 can be solved for the elastic coordinates. This leads to

 

(m. = A. mat: + a. sum: — At (10)

where :( r (A? )1!

_flfi_ - IAh - with ma) . 3h — 5k (11)

in which the wave number P... the circular frequency B1,, and the dimensionless rotation-ware

number m are defined, respectively, as

'2h—11142—,” . wfi . 5A=Pkco‘/1—vr§ (1;)
in which co is the velocity of the wave propagation without dispersion and is defined as

so = 5 (13')
p

in which p is the mass density ofthe rod.

4. WAVE MOTION B‘ THE ELASTIC SYSTEM

In this section the propagation of the impact-induced waves is analyzed using Fourier method,
wherein the wave motion is represented by using the mode superposition technique The longituv
dinal displacement of an arbitrary point on the rod after impact can be obtained as

«142.0 =Z(sinn.=)(q})i (1
i=1

)

Substituting Eq. 10 into Eq. 14, the longtudinal displacement of an arbitrary point on the rod
can be expressed as the sum of two functions as

«Hm = me) + w‘(z) (15-,
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where :1" and w" are called, respectively. the transient and steady state solutions and are defined
as

u-‘(=,:) = i x. [cos(Pl.= - fit: — ¢t)— cosU’w +flu + (at) (16a)
i=1 .

N
i
t
-
1

uli(e) = — i A]. sin Pg:
s=1

in which the amplitude X; and the phase angle 43:. are. respectively, defined as

. I - As .
A): = AZ+Bf , ¢s =lon LE; (1:)

Observe that the steady state solution rifle) at a given point z is constant and does not depend
on time. While the transient response u‘(=.l) describes a wave motion. Furthermore, the steady
state solution ml is equal to zero if the angular Velocity is equal to zeroI while the transient
response '1' depends on the angular velocity as well asthe impact conditions.

5. PHASE VELOCIT‘IES OF THE WAVE MOTION

In perfectly elastic structural systems. the wave motioncan be represented using Fotu'ier’s method
as the sum of infinite number of harmonic waves. The phase velocities of these harmonic waves

are equal and equal to the group velocity of the wave motion. The medium in this case is said
to be nondispersive. In this section the effect of the finite rotation on the phase velocities'of the
impactinduccd waves is examined.

It is clear that the kth term in the transient response of Eq. 16:! can be written as

 

vi = "; [mats — m— m— cosmz +5.2 mi]
=f:(=-¢s‘)+fz(=+flh‘) ~ (13)

in which the phase velocity q, ofthe lath term is defined using Eq. 18 as

«=% no

Substituting Eq. 12 into Eq. 19, one may define the dimensionless phase velocity as

(qt=§= (1-03) (20)

One may observe, in view of Eq. 20, that lie) or equivalently In. is equal to zero, ca, is equal to
co and all the harmonic waves have the same phase velocity defined by Eq. 13. Observe that as
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the result of the finite rotation, difl'erent harmonic waves have dilferent phase velocities. Clearly,
the finite rotation of the rod has more significant efl'ect on the low fiequency harmonic waves as
compared to the high frequency harmonic waves. Figure 2 shows the effect of the angular velocity
of the rod on the velocity of the harmonic waves. The results presented in this investigation are
obtained for the case in which the length of the deformable rod is assumed to be 3,6 m, and its
circular cross section has a diameter of 0.0185 in. The rod is assumed to be made of steel with
modulus of elasticity equal to 2 x 10"]il/I'n2 and mass density’equal to 7870 Icy/m3. Observe
from Eq. 20 and the results presented in Fig. 2 that as the mode number It increases, the wave
length N, decreases and the effect of the angular velocity u on the phase velocity decreases. it is
also clear, fi-orn Eq, 20, that the phase velocities of the harmonic waves are independent of the
impact conditions and the coeficient of restitution. They depend only on the material of the rod
as well asthe finite rotation.

6. TRANSIENT WAVE MOTION

In this section the effect of the angular velocity of the rod as well as the impact conditions such
as the velocity of the impacting rnass V’, the mass ratio is, and the coeficient of restitution e on
the transient wave motion is examined.

5.1 Angular velocity
Figure 3 shows the effect of the finite rotation on the transient wave motion as described by the
function u; in Eq. 18. Clearly, the finite rotation has a more significant effect on the low frequency
modes of vibration as compared to the high frequency modes.

5.2 Impact conditions
While the impact conditions do not have any efiect on the phase velocities of the harmonic wares,
these conditions have an effect on the transient wave motion v‘ . It is also clear that increasing
the velocity of the impacting raass leads to an increase in the absolute value of the amplitude of
the wave motion. It is clear that increasing the mus m’ and the coefficient of restitution e lead
to an increase in the amplitude of the elastic waves.

1. TOTAL DEFORMATION

The total axial deformation ai a point on the rod is the sum of the transient impact-induced wave
motion and the steady state displacement resulting from the finite rotation of the rod. It may be
misleading to assume based on the discussion presented in the preceding sections that the increase
in the angular velocity reduces the vibration. It is important, therefore, to emphasize at this point
that increasing the angular velocity does not imply a decrease in the total lony'tudinal deflection
of the rod. Even though, for a constant angular velocity, the steady state response w‘(z) given by
Eq. 16b is time independent, w‘(z) has a siytificant effect on the total longitudinal deflection of
the rod. Clearly, this term is equal to zero, when the angular velocity u is equal to zero. The total
longitudinal defamation at an arbitrary point on the rod is therefore the sum of the harmonic
wave motions plus this constant term which is mainly due to the angular velocity ofthe rod. The
effect of the angular velocity u; on the total axial deformation is shown in Fig. 4, It is clear from
Fig. 4 that increasing the angular velocity of the rod increases the longitudinal deflection of any
point on the rod.
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8. SUMMARY AND CONCLUSIONS

In this investigation the effect of the finite rotation on the propagation of elastic impact-induced
waves in constrained deformable bodies that undergo large displacement is examined. Using
the solution of the generalized impulse momentum equations, the solution of system differential
equations is expressed as the sum of the wave motion and the steady state solution. It is shown in
this paper that dispersion occurs as the result of the finite rotation. Consequently, the resulting
harmonic waves travel with difi‘erent phase velocities that depend on the finite rotation. It is
also shown that the finite rotation has more significant efl'ect on the phase velodty of the low
firequency harmonic waves as compared to the high frequency harmonic waves. Even though in
the analysis presented in this investigation, only the case of axial impact is considered, similar
procedure that utilizes the generalized impulse momentum equations can be used for the analysis
of transverse waves in constrained elastic systems.
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Fig. l Coordinates of the flexible beam.
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Fig. 2 The efl'ecl of the angular velocity w on the dimensionless
phase velocity"
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Fig 3 The effect of the angular velocityu on the transient wave
11103301] a: the midpoint (c = 0305, p = 1.4, I = 0.0004
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Fig. 4 The effect of the angular velocity w on the total drl'or.
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