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1. INTRODUCTION

Khulief and Shabana (1], proposed a method for the dynamic analysis of flexible multibody s¥s-
tems with intermittent motion. The jump discontinuities in the system velacities and reaction
forces are predicted using the generalized impulse momentum equations that invelve the coefB-
cient of restitution and the Jacobian matrix of the kinematic constraints. The validity of using
the generalized impulse momentum equations in the impact analysis of constrained deformable
bodies has been examined both theoretically and analytically by Rismantab-Sany and Shabana
[2]. The convergence of the series solutions obtained by solving the generalized impulse momen-
tum equations was used to prove the validity of using these equations in the impact analysis of
constrained deformable bodies. Yigit, et al. [3], examined experimentally the validity of using
the impulse momentum equations. Their experimental resuits were in a good agreement with
the numerical results obtained using the impulse momentum equation:. They concluded that the
generalized impulse momentum equations can be used with confidence to study impact problems
in constrained deformable bodies.

The objective of this investigation is to examine the effect of the finite rotational displacement on
the velocity of propagation in constrained elastic systems. The system differential equations of
motion are developed using the principle of virtual work in dynamics, The jump discontinuities in
the system generalized velocities as the result of impact are predicted using the impulse momentum
equations that involve the coefficient of restitution. The impact-induced wave motion is analyzed
using Fourier method. The series solution obtained in this paper is written as the sum of wransient
and steady state solutions. The use of the procedure described in this paper is demonstrated using
a radially rotating rod which is subjected to an axial impact.

2. DYNAMIC EQUATIONS
In this investigation the radiaily rotating rod shown in Fig. 1is used to examine the effect of
the finite rotation on the propagation of the impact-induced longitudinal elastic waves. Using the

principle of virtual work in dynamics and assuming the angular velocity of the rod is specified
and constant, the differential equations of motion of the rod i can be written as [4]

Mys & + (K - w*Miy )y = ' (1)
where w is the angular velocity of the rod and Mjf! and I‘C}! are, respectively, the mass and

stiffness matrices of the rod which can be evaluated using the assumed shape function. The
matrices My, and K}, and the vector I are given by

Proc.1.0.A. Vol 12 Part 1 {1990) 485




Proceedings of the Institute of Acoustics

WAVES IN ROTATING SYSTEMS

1 0 . 0
, m [0 1 ... 0
M:f!="'2" S P (22)
00 1) oxn
1
1 0 ... 0 39_1
, Eax® |0 9 ... ] . 4mil 1
Ko==r|:: - v b=y | (%)

00 ... (2a-10),,n _ip4
(=11

where mi , a, I, and E are the mass, cross sectional area, length, and the modulus of elasticity of
the rod, and n js the total number of vibration modes.

3. IMPACT ALGEBRAIC EQUATIONS

3.1 Impulse Momenturn Equations .
Figure 1 shows a mass m’ that moves along the axis of the rod with a constant velocity 177,
This mass is assumed to impact the free end of the rod axially at time t = 0. If the geometry
of impacting surfaces and friction between the two impacting bodies are not considered, the
generalized impulse momentum equations of this system is given by {1}

M L [o4] _[o
[re )% -1) @
where M is the system mass matrix which is defined as
My, 0
- 11
M= [ 0 m-v'] )

in which Lq is the change of the penetration in the direction of the common normal at the point
of impact with respect ta svstem generalized coordinates q, /54 is the jump in the velocity vector,
H is the generalized impulse, and .

p=—(l+eV (5)

in which e is the coefficient of restitution.

By solving Eq. 3, the jump discontinuities in the velocity vector can be written as

Ag= {ﬁf{}"] =H[_F7"(:_"l§+:],- E=12...,n (6)

where the generalized impulse H is given by
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in which u is the mass ratio defined as
{8

EALS

3.2 Solution of the Differential Equations
By using Eq. 6, the initial conditions for the differential equation of Eq. 1 as the result of the
axial impact are defined as

GOk =0 GOk =Bdk =2 (-1, E=12..,n @

By using these initial conditions, Eq. 1 can be solved for the elastic coordinates. This leads to

(q})), = Ay cos St + By siﬁﬁkt— Ay (10)
where 3 Y' i)
= 1 Ly
“=iEpa-D 0 T Th (1)

in which the wave number P, the circular frequency f,, and the dimensionless rotation-wave
number #;, are defined, respectively, as

% - 1
A= ot A=A/l a2

in which ¢ is the velocity of the wave propagation without dispersion and is defined as

o=y (13)

in which p is the mass density of the rod.

4, WAVE MOTION IN THE ELASTIC SYSTEM
In this section the propagation of the impact-induced waves is analyzed using Fourier method,

wherein the wave motjon is represented by using the mode superposition technigue. The longitu-
dinal displacement of an arbitrary point on the rod after impact can be obtained as

u}(z,t) =EZ(sinPk:)(q})y. (14)
=1

Substituting Eq. 10 into Egq. 14, the longitudinal displacement of an arbitrary point on the rod
can be expressed as the sum of two functions as

u}(z,t):v‘{:,t)-t—w‘(z} (13
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where o and « are called, respectively, the transient and steady state solutions and are defined
as

1 n

33K corBue - At )~ conlPir + ot + 1) (162)

k=1

u‘(z,:) =

wz)=— i Ay sin Pz (lﬁb)
k=1

in which the amplitude X; and the phase angle i are, respectively, defined as
. { ~1 4 -
Xp = AE + BE ’ ¢ = tan 1—‘-’: (17

Observe that the steady state solution u_r“[z) at a given point 2 is constant and does not depend
on time. While the transient response v*(z,) describes a wave motion. Furthermore, the steady
state solution wuf is equal to zero if the angular velocity is equal to zero, while the transient
response v' depends on the angular velocity as well as the impact conditions.

5. PHASE VELOCITIES OF THE WAVE MOTION

In perfectly elastic structural systems, the wave motion can be represented using Fourier’s method
as the sum of infinite number of harmonic waves. The phase velocities of these harmonic waves
are equal and equal to the group velocity of the wave motion. The medium in this case is said
to be nondispersive. In this section the effect of the finite rotation on the phase velocities of the
impact-induced waves is examined.

It is clear that the kth term in the transient response of Eq. 16a can be written as

ui = A—;" [cos(.P;‘: — Bt~ ) - cos(h,z + Bit +¢,,)]
= filz — at) + falz + at)

in which the phase velocity ¢ of the kth term is defined using Eq. 18 as

Q= 7,:
Substituting Eq. 12 into Eq. 19, one may define the dimensicnless phase velocity as

(@l == ={1-7i) (20)

One may observe, in view of Eq. 20, that if w or equivalently m is equal to zero, ¢, is equal to
¢p and all the harmonic waves have the same phase velocity defined by Eq. 13. Observe that as
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the result of the finite rotation, different harmonic waves have different phase velocities, Clearly,
the finite rotation of the rod has more significant effect on the low frequency harmonic waves as
compared to the high frequency harmonic waves. Figure 2 shows the effect of the angular velocity
of the rod on the velocity of the harmonic waves. The results presented in this investigation are
obtained for the case in which the length of the deformable rod is assumed to be 3.6 m, and its
circular cross section hes a diameter of 0.0185 m. The rod is assumed to be made of steel with
modulus of elasticity equal to 2 x 10" N/m? and mass density’equal to 7870 kg/m3. Observe
from Eq. 20 and the results presented in Fig. 2 that as the mode number & increases, the wave
length A, decreases and the effect of the angular velocity w on the phase velocity decreases. It is
also clear, from Eq. 20, that the phase velocities of the harmonic waves are independent of the
impact conditions and the coefficient of restitution. They depend omly on the material of the rod
as well as the finite rotation.

6. TRANSIENT WAVE MOTION

In this section the effect of the angular velocity of the rod as well as the impact conditions such
as the velocity of the impacting mass V7, the mass ratio p, and the coefficient of restitution ¢ on
the transient wave motion is examined.

5.1 Angular velocity

Figure 3 shows the effect of the finjte rotation on the transient wave motion as described by the
function v in Eq. 18. Clearly, the finite rotation has s more significant effect on the low frequency
modes of vibration as compared to the high frequency modes.

5.2 Impact cenditions

While the impact conditions do not have any effect on the phase velocities of the harmenic waves,
these conditions have an effect on the transient wave motion v . It js also clear that increasing
the velocity of the impacting mass leads to an increase in the absolute value of the amplitude of
the wave motion. It is clear that increasing the mass m’ and the coefficient of restitution e lead
to an increase in the amplitude of the elastic waves.

7. TOTAL DEFORMATION

The total axial deformation at a point on the rod is the swm of the transient impact-induced wave
motion and the steady state displacement resulting from the finite rotation of the rod. It may be
misleading to assume based on the discussion presented in the preceding sections that the increase
in the angular velocity reduces the vibration. It is important, therefore, to emphasize at this point
that increasing the angular velocity does not imply a decrease in the total longitudinal deflection
of the rod. Even thaugh, for a constant angular velocity, the steady state response w'(z) given by
Eq. 16b is time independent, wi(z) has a significant effect on the total lengitudinal deflection of
the rod. Clearly, this term is equal to zera, when the angular velacity w is equal to zero. The total
longitudinal deformation at an arbitrary point on the rod is therefore the sum of the harmonic
wave motions plus this constant term which is mainly due to the angular velocity of the rod. The
effect of the angular velocity w on the total axial deformation is shown in Fig. 4. It is clear from
Fig. 4 that increasing the angular velocity of the rod increases the longitudinal deflection of any
point on the rod.
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B. SUMMARY AND CONCLUSIONS

In this investigation the effect of the finite rotation on the propagation of elastic impact-induced
waves in constrained deformable bodies that undergo large displacement is exarmined. Using
the solution of the generalized impulse momentum equations, the solution of system differential
equations is expressed as the sum of the wave motion and the steady state solution. It is shown in
this paper that dispersion occurs as the résult of the finite rotation, Consequently, the resulting
harmonic waves travel with different phase velocities that depend on the finite rotation, It is
also shown that the finite rotation has more significant effect on the phase velocity of the low
frequency harmoenic waves as compared to the high frequency harmonic waves. Even though in
the analysis presented in this investigation, only the case of axial impact is considered, similar
procedure that utilizes the generalized impulse momentum equations can be used for the analysis
of transverse waves in constrained elastic systems.
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Fig. 1 Coordinates of the flexible beam.
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Fig. 2 The effect of the angular velocity o on the dimensionless
phase velocity.

49¢

Proc.l.C.A. Vol 12 Panl 1 (1990)




Proceedings of the Institute of Acoustics

492

*10

Translenl wave motlon, {(m)

8.0

u.o-ﬁ@iﬂ -

5.0

=10.0

=15.0 4

-25.04:

ANG. VELOCITY, =
v=10

=30.0-

1.

D 20 0 40 68 85 TO  e0 9.0 0.9
Mode number, k

Fig. 3 The effect of the angular velocity w on the transient wave
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