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Abstract

In this paper, methods of Bayesian inference will be introduced, and applied to the

problem of the estimation of model parameters that are to be inferred given data and any

relevant prior knowledge. The methods are also applied to the selection of the best model,

within a set. to account for the observed data, and the problem of signal detection is also

addressed.

1 Introduction

In data analysis one is interested to know whether the model function that is being used

to describe the data, is actually appropriate for the particular problem under investigation,

and if so, to extract values for the parameters of the modd. We therefore need a way to

choose between several possible models.

To solve this problem, one must enumerate the possible models and realise that in

terms of real data the correct model may not be within the set choosen. All that we can

do is compare various models within a set that we have defined to see which models are

more plausible.

This. and the problem of extracting values for model parameters, is a problem of

Scientific Inference, and to carry out consistent reasoning and inference, one should use

Bayesian methods. I

The structure of the paper is as follows. An introduction to Bayesian‘inference will

be given in the next section, followed by the application to parameter estimation, model

order selection and signal detection. Results are y'ven for the determination of the num-

ber of decaying sinusoids present in a data sequence together with the estimation of the

parameters, and conclusions are given in the final section.

2 Bayesian Inference

Bayesian inference is a mode of scientific inductive reasoning that has been applied to a

vast number of scientific disciplines, Laplace (1812), Jaynes (1989). A distinctive feature of
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the method is that it allows investigators to use both sample and explicit prior information
in a ioy'cally consistent manner in making inferences. Bayes’ theorem. sometimes also
referred to as the principle of inverse probability, serves as a fundamental learning model
in the Bayesian approach. Initial or prior information concerning a hypothesis ll, written
as P(H II), is combined with current sample information. y'ven by the likelihood of the data

- D, written as P(D|HI). to produce a ’posterior‘ distribution, P(H|DI) that incorporates
both prior and sample information, together with a very important normalisation factor
P(D|l), which will later be referred to as the 'evidence’. Bayes‘ theorem follows from

some simple rules of probability theory, and can be written

_ P(D|HI)
P(H|DI) — P(H|I)W

R.T.Cox in 1946 developed a rigorous mathematical theory which considers probability
as a meuure of degree of plausibility. The theory emerged from a set of qualitative
desiderata for a measure of plausibility; a) that degrees of plausibility can be represented
by real numbers, and b) that the system must beinternally consistentand consistent
with common sense. The desiderata make no reference to frequencies, random variables,

ensembles or imaginary experiments and they only refer to the plausibility of propositions.
One is, of course, free to use the resulting theory to consider propositions concerning

frequencies in repeated experiments, but this emerges from the theory, frequency not being
the basis for probability theory.

3 Parameter Estimation

In an estimation problem one assumes that the model is true for some unknown values
of the model parameters, and one explores the constraints imposed on the parameters

by the data, using Bayes’ theorem. The hypothesis space for an estimation problem is
therefore the set of possible values of the parameter vector {u}, and it is this vector that
will form the ’hypothesis' that will be used in Bayes’ theorem. The data form the sample
space, and both the hypothesis space and the sample space may be either discrete or
continuous.

Bayes’ theorem for our particular problem may be written-as

UPuunm) = Puwnnw
which tells us the posterior probability of a hypothesis after data have beenaquired in
terms of the prior probability of the hypothesis and the likelihood of the data.

The term in the denominator is independent of {a}, and g'ven the prior and the

likelihood it may be calculated from the axioms of probability theory using

FUJI!) = 2; P(~.~II)P(D|u.-n
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This term is therefore a normalisation term, also known as the marg'nal likelihood, and it

plays a very important role in model comparison.

Ifonly a subset of model parameters are of interest for a particular application,then the

remaining parameters can be considered to be nuisance parameters, and may be eliminated

from consideration by a process of mary‘nalisation. For example, if the particular problem

has two parameters a and fl and we are only interested in a, then we may calculate

P(a[DI) from the full posterior P(afl|DI) by the same method as above for the calculation

of P(D|I), and we can write

P(a|DI) = /_dfiP(afi|DI)

This process of mary'nalisation is of both practical and theoretical interest, since it can

significantly reduce the dimension of the problem being addressed. The condition under
which one is justified in using marginalisation and the full implications in terms of possible

bias in the estimated parameters, are discussed at length by Cost and Reid (1989).

Born a considerations of the error statistics arising from a mismatch between the model

and the data, the likelihood function for a general model function g'ven by 2;, BjG,’(t,-, (an

=36 can be written

P(D|HI) = (2r)'"”a'" exp [—%(D - BG)T(D — so»]

where D is a data vector of length N, B is a model amplitude vector of length m and C'

is a matrix of model functions of order N x m.
To consider the marginal probabilities for the parameters independent of amplitudes,

the following integrals have to be undertaken,

N

P((w}|Dl) or L: a dBl...dBmP(D|HI)P(Bl,B:,...,Bm,{u}|1)

Making the substitutions ‘P = 67D for the model functions projected onto the data,
and Q = 600 for the model functions projected onto themselves, and carrying out the

integration, the required marginal posterior probability may be written

w ‘ "-N

P({~}IDI) = %(2r)‘m'”’”a—,fi exp [-,—:,-<D' - pro-'pfl

it should be noted that the function 1’ can be called a generalised periodogram, since

when the model function is a sinusoid, ‘P is the periodogram.

If the variance is unknown, it too can be treated as a nuisaince parameter and inte-

grated out of the problem. In this case, a lefl’reys prior should be used, since the variance

is a scale parameter (see Jefl'reys 1939). However, for only a small number of data points,

the final difi'erence between the assumption of a uniform prior and a Jefl'reys prior is very

small. Integrating the noise variance between 0 and so with a Jefl'reys prior l/a gives
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P({~)1n«""-"V' rI(N - mm]
Pwv) [dim 2

which is of the form of the Student t-distribution. as has been noted many times in

the statistical literature (Zellner (1971), West and Harrison (1989), Duijndam (1988).

Broerneling (1985) and Bretthorst (1989)).
The formalism can also readily deal with coloured noise by replacing the noise variance

above by the coloured noise covariance matrix . This has the effect of renormalising the

model functions and the data, Fitzgerald (1991). Whaler: (1971).

P({u}|b]) = (D: _ pTQ-lp)(m-N)/2

4 Model Comparison

It has been assumed in the formalism given above for the parameter estimation problem

that the model under consideration was the correct model with which to interpret the data.

This is obviously an assumption, and it is of interest to test this assumption, since the

Bayesian framework allows for such a comparison by calculating the relative probabilities

of candidate models within a g’ven set. Also from the framework emerges a quantification

of Ockham’s razor, which states that simpler models are to be preferred unless a more

complicated model provides a significantly better fit to the data.

To use Bayes‘ theorem for model comparison. the prior information I asserts that one

of the models within the set is correct, and the probability of model k can be written

P(D|k1)
P(D[I)

 

Helm) = P(kll)

If we have no prior information preferring one model over the others, we can take the prior

P(k|l) = l/m, where m is the number of models within the set.

The likelihood P(D|k1). which may also be written as P(Dl1§), can be calculated from

P(D|kl) a P(D|I,,) = ] do.p(u,,[r.)P(Diu.1.)

where I). is the only relevant information concerning model ls.

The mary'nal likelihood is g'ven by

P(D|I) = 2 P(k|l)P(D|kI)
h

In the model comparison problem, if attention is focused on the ratio of probabilities

of models, the so-called ’odds‘, we can write the odds in favour of model 1: over model j,

say, as

_ P(kIDI)
“PW
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which from above. may be written as

o [w
"’ PW) IdeP(Uj|1i)P(Dkv,-lj)

41:21:51
where the factor in brackets is called the prior odds, and by assumption that our prior

knowledge does not prefer one model to any other in the set, this factor is unity. The

factor B,”- is called the Bayes' factor. (or the weight of evidence), Jefl'erys (1939), Good

(1983), and can be equivalently written as

._ Pwu.)
B" ‘ Palm

which is the ratio of the prior predictive probabilities. This will be used in the results

section to determine the number of decaying sinusoids present in data, for which case the

various hypotheses will be model functions containing different numbers of terms.

 

5 Bayesian Detection of Signals

Let us consider the Bayesian detection of a known signal model which is buried in

noise, and which has unknown parameters. This type of problem arises frequently in the

context of radar and sonar, where the form of the signal one is trying to detect maybe

known, but the parameters are unknown and possibly time varying. It may also be the

case that the signal one is trying to detect may not be present.

The simplest detection problem involves choosing between two possible hypothesis, say,

Ho and H1, referring to the null hypothesis and the 'signal present’ hypothesis respectively.

The decision rule for the binary detection problem is determined by the ratio of the

posterior probabilities of hypothesis H: to hypothesis Ho. y'ven the data and the prior

information. This can be put on a decibel scale, a potive (13 rating favouring HI, and a

zero dB rating favouring neither hypothesis.
The decision criterion can thus be written as

Pun |DI)
P(Ho|DI)

where the posterior probabilities of the two hypothesis are y'ven as before, by

K = 1010810

“Help” = ,(m-Nm “(N -2""V2] (D2)(m—N)/a

and
P I ‘m-"V’r N—m/2 _ m_

P(H1|DI) = fiW—AT)J(03 _ pTQ lp)( N)/2

Results obtained using this method can be found in Fitzgerald (1991).
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6 Results

The data shown in Fig 1. consists of seven decaying sinusoids in the presence of a very

small amount of noise, ( standard deviation of 10"). with parameters shown in Table

1. Although this is synthetic data, the parameters have been choosen to correspond with

realistic acoustic or vibration situations. '

The Bayesian model order selection method was applied to this data, by evaluating

the posterior probabilities of models containing between one and nine decaying sinusoidal

functions. It was found that the evidence was overwhelminyy in favour of model order

seven, and the estimated parameters for this model are shown in Table 2. It is seen that

all of the model parameters are in very close agreement with the correct values.

As the noise level increases, so the parameter estimates start to deviate from the true

values, as one would expect from common sense, and eventually at a certain noise level

the model order selection breaks down, giving a high probability for the wrong model.

It is interesting to notice that in this case, the variance of the estimated parameters is

large, telling us not to g've a great deal of plausibilty to the results. If one observes the

error between the fitted model and the data, then for the original data with only a small

amount of added noise, the error 'loolrs' the same to the eye for model orders greater than

four, and hence any model order selection technique relying on residual error, would fail

whereas the Bayesian inference method yields very plausible results, gracefully degrading

as the observation noise increases.

 

osowouomzsoaooasommsoo

tine

Fig 1. Simulated data consisting of 7 decaying sinusoids.
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7 Conclusions

In this paper, an outline of the methodology used to conduct Bayesian inference in

signal processing and data analysis has been g'ven. The ideas assoo'ated with the removal

of nuisance parameters have been described and the reduction in the dimensionality of

the resulting parameter space has been pointed out. The intergration of the nuisance pa-

rameters can be carried out either analytically. for certain model functions, or numerically

using purpose built fast and efficient numerical integrators.

It is clear that the methods can be adapted for the cases where the observation noise,

and hence the form of the likelihood function, is non-Gaussian. For these cases it may

not be possible to marg‘nalise over the nuisance parameters analytically. One may require

numerical integration or approximations, such as the apansion of the noise probability

density function in terms of Hermite polynomials, to obtain the posterior probabilities of

the parameters. This work is in progress.

It has been shown that the Bayesian paradigm g'ves a constent framework with

which to conduct scientific inference, but the full potential of the methods still remain to

be explored in many engineering and applied science applications. it is hoped that this

article will stimulate sufficient interest to enable the Bayesian methodology to be applied

to signal processing in the very broadest sense.

The computer programs, written in C, Fortran and MATLAB, used for the analysis of

the results presented in this paper are available upon request.
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200 to x 10‘ 1.0 4.0”: at IT

(.02 x10" LO £218 :1 10"

8.02 x 1111'I 2.0 8.019 x 10"
1.198 x10" 1.0 1.198 x 10“
1.204 x 10" 1.2 1.204 x 10"
1.59 x 10" 0.5 1.590 x 10"

1.606 x 10" 1.5 1.606 x 10“

Table 1: Parameters of the data Table 2: inferred Parameters
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