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Abstract

In this paper, Bayesian inference is applied to the problem of direction of arrival estimation.

The method is discussed, and the algorithm is found to outperforms methods such as MUSIC

and other eigen-decomposition techniques in the case of very low signal-tonoise ratios and

closely spaced sources. One of the advantages of the present method is that it is able to handle

special cases such as coherent and correlated signals and it does not assume the receivers to be
equally spaced. It is also particularly well suited to the problem of estimating the directions of

signals of quite difl'erent frequencies, and in such a case, the frequency and bearing estimation

can be achieved together.

1 Introduction

In order to accurately locate closely spaced sources in the far field of an antenna array, a problem

which is common to several fields, including sonar, radar, seismoloy and astronomy, a variety of

methods have beendeveloped. One of the first of these methods was the maximum likelihood

(ML) technique [1], [2], which requires searching for a. peak in the likelihood surface, which

can be very computationally intensive, although the advent of parallel processing technology

together with the use of highly efiicient methods for perforating the required multidimensional

search, has led to much renewed interest in the method. Good results using simulated annealing

and genetic algorithms [3], [4] have been found, and the use of alternating projections and the
closely related IMP algorithm seem to offer many advantages over eigen-decomposition methods

such as MUSIC [5], Minimum Energy, Capon's minimum variance method [6], and the method
of Kumaresan and Tufts One of the major disadvantages with most of the above methods
is that they require the number of sources, In, to be predetermined.
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The purpose of this paper is' to apply Bayesian inference to this problem of spatial source

location, and to compare some of the results obtained with some of the above mentioned

methods. Possible extensions of the method will also be given.

2 The Bayesian Method

In any form of data analysis, it is usually an implicit assumption that one has a physical

model that is thought to best represent the observed, in many cases noisy, data. The problem

facing the data analyst is therefore one of inferring values of the parameters of the particular

model under consideration. A more complex task is to select the most plausible model from a.

predefined set, that best accounts for the data. The methods used to address this problem rely

on scientific inference, and in order to carry out consistent reasoning and inference in situations

having incomplete knowledge, Bayesian methods are uniquely placed.

For the purposes of this paper, Bayes’ theorem may be written

P(HII)P(DIHJ)
P(D|I)

where P(X|Y) represents a conditional probability i.e. the probability of X g'ven Y. Thus,

P(H |D,I) is the probability of H (a stated hypothesis, say) y'ven knowledge of D and any

prior information. If H represents the set of parameters of the hypothesis that we are seeking

to estimate, D the data We have recorded and I any prior knowledge we have of the system,

then P(D|I) is a normalization term and we can write;

P(H|D,I) or P(H|I)P(D1H,I)

P(D|H,I) is known as the likelihood function. Thus, in the Bayesian approach we can assign a

probability distribution to the unknown parameters, which is g'ven by the prior multiplied by

the likelihood. Within the framework of Bayes’ theorem, we are then able to integrate out any

unwanted or"nuisance’ parameters, a process known as marginalisation. If such marginalisation

can be done anlaytically then the complexity of the problem can be reduced considerably.

P(H|D,1).—.

In order to bring out the physics of the situation we are considering, it is helpful to consider

the model function for our problem to be written using a summation convention, rather than a

vector notation, [9], and we may write a general model function as,

1(1) = in; mum)
k=l

where B and G(t,w) are amplitudes and model functions respectively, and the data we are

trying to account for by this model can be written as

'10:) = f(t.‘) + e.- i = 1,2,3,.....,n
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where e is a noise vector. Therefore the hypothesis we are trying to test using Bayes’ theorem is

whether or not the model function given above accounts for the data. The posterior probability

may be written P(HID,I) and this is taken to mean the probability of the model parameters

given the data and prior information.

Integrating out the amplitudes B, for example, we can write the marginalised posterior prob-

abilities for the remaining parameters to as

P(w[D,I) = / P(B,ulD,I)dB

In our particular problem of estimating the directions of various sources, we will begin by

discussing the simplest scenario in which there are m narrow-band sources of frequencies

1mm, .... ..,u,,. distributed at elevation angles 91,03, ..... ..,0,,. in the far field of an equispaced

linear array of n passive sensors. All sources are taken to lie in a single plane through the line

of sensors, so that, for the moment, the problem is dfectively one dimensional.

We assume signals arrive at an array as plane waves, with b the interelement spacing, and let 0

be the elevation angle measured from the line of the array. The path difference between adjacent

elements is bcos 0. Suppose we take a total of N time samples — often called ‘snapshots’; the

In“ source then produces a signal at time t.- at the j"I element y'ven by

1k(li)8in[wk(ti + (J' -1)1I)+ tMull (1)
booedwhere n, = c and c is the speed of the wave in the medium, wk = 21W); =angular frequency

of the 1:“ source, ¢k(t.-) = phase of the k” signal at element 1 (phase reference for array) and

time t.- and Ik(t.' = amplitude of the k“ signal at time 2;.

 

We will assume the general case of time-varying amplitudes and phases, and therefore if dj(t.')

is the data we collect from the 1"“ element at time t.- then

djui) = i Manhunt.- + u -1)n)+ «001+ ext) (2)
i=1

for j = 1,11. Here, ej(t.-) is the noise at time t.- at the 11" sensor. The signals and noise are

assumed zero mean and statistically stationary. We also take the noise to be uncorrelated from

sensor to sensor with variance 0’ at each. If the noise results from many independent processes

then the Central Limit Theorem tells us that its probability distribution will take a Gaussian

form:

 

P 1 —e!-(t,' )2
(3i (til) = W“P 202 (3)

Thus, for a sequence of n sensors and N time samples we have

— N n 1 _ej(tl_)1

P(9)—gj=I-Ilmexp( 202 ) (4)
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If we identify the noise with the difference between the data and the true signal then we obtain

the likelihood function L as '

 

N n m

L(w,¢.l.‘r.") °‘ (,le H ex? ("2% Elm“) - E 1k(1-')Bin[wk(ti+ (J' - 1h) + @001?)
l k=1'=1 5:]

(5)
where w = (whom. . . ,wg) etc. The next step is to write

In(t.-)sin [wk(t.~ + (J' - l)n) + ¢k('i)l = Aim-)5“! M0.- + (1’ - 1)n)l+3k(tilcoslwk(li + U 1871)]

where Ag(t.-) = Ik(ti)cos¢k(t.-) and 3,0,) = Ik(t.-)sin¢1,(t;). The likelihood can then be

written as

 

N 7: 2m 2

L(u,¢,I,‘r,a) o: 0:” Hexp aw.) — *2 Cut-H.410] ) (7)
=1{:1 ;=l

where C50.) = A),(i.‘), fjkug) = sin[wk(t.-+(j —1)Tk)] for k=l,m and Ckui) ='Bk_,,.(t.‘),

[.100 = cos[wk_...(t.- + (j - l)n._.,.)] for k=m+1,2m.

Let us define a ‘coherence time’, tub, for the array, where

do"

C

 

tech =

where rim-r is the total length of the array, and c is the speed of the wave. The coherence time,

tank, is therefore the time taken for a signal to propagate across the array. If we are to assume

the general case of possibly varying amplitudes and phases, then we are restricted to considering

the data in blocks of (Link) or less, where f, is the sampling frequency. One can, of course,

deal with the data on a snapshot-by-snapshot basis, but if there are significant variations of

amplitude and phase over a time of tag}. then the method is no longer applicable to the problem

as the data in a single snapshot will then have different amplitudes and phases at each sensor.

Thus, supposefiwe have a total of N snapshots and n5 is the number of snapshots in each block,

(115 = integer part of (f,.t¢.p.)), we then have N}, = N/nb blocks of data to deal with, and we

can therefore write the likelihood as

M, an. n 2m 2

L(w,¢,r.r.a)u a—Ifinlecp (—fi H)?” Margaritas] ) (s)
a: x: o— n”: =

i.e over each interval 1 = [l + (a — 1)n5]dt to (t + nbdt) we assume that the amplitudes C; are

constant.

Our aim is to integrate out, for each s, the 2m amplitudes, ;, as nuisance parameters, they

can, however, be estimated at the end of the calculation. The way wehave chosen to do this
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is to write the fjk(t.') in terms of new-functions H550.) which are orthonormal with respect to

sums over i and j, having amplitudes Ag.

Wecan now write Las

 

Nb

L(to,1,r,a) = H L, (9)
3:!

where L. are the likelihoods for eadl block with, for example, L1 given by

L a —‘ 1 .22 this “A” 10‘(ul tfvv)—annbexp 'W _ E k k‘i'hz-l k ( )

where M n

71k = Ezdfltimjkfln‘) (11)
i=1 i=1

and II. II

3’ = ZED-burn” (12)
i=1j=l

The expression for Lt can now be split into 2m products:

1 2'" A-kz All”, 422

0"” H up (_ _T + 4111172 (13)
k=l

L1(w,X,-r,a) or

  

As we have no prior information about ‘the amplitudes 1, we assign them a uniformly flat

prior probability i.e. Pall) =consta.nt. This tells us that the probability of 1 given the
data is therefore proportional to the likelihood. We should note here that we have chosen one

of many options open to us, namely we have chosen to assign a non~informative prior to the

transformed amplitudes 1. If we had chosen to assign a uniform prior to the original amplitudes

C, then on transformation to our set of orthogonal amplitudes 1 we would introduce afactor of

NIH", where "J" is the jacobian of the transformation from C to 1. The two approaches will

obviously give different results — although in this particular problem it in fact amounts to very

small changes in final output. We have chosen to assign a uniform prior to the transformed

amplitudes as these are a set of effectively independent and orthogonal quantities and thus

attributing a non-informative prior to each might be seen as more sound than doing so to a

set of interrelated quantities: we do, however, stress that such choices of where to assign your

priors is a matter of some debate and is a feature of the Bayesian approach. It should be

realised that the IMP [8] algorithm can, of course, be reformulated in these terms, the current

IMP being equivalent to the assumption of uniform priors on a particular set of non-orthogonal

model functions.
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Integrating out the 2m amplitudes gives,

m— n l ‘L;(w,'r,a) or a2 " “exp —2—02-(IP — h2)] (14)

The total likelihood is then given by
N.

L a: 1'[ L, (15)
1:]

We can go one stage further and eliminate the noise variance 0 from equation (15), as a is, in

general, unknown. In what follows we use both a Jefl'reys prior. 1/0, and a constant prior for

the rms noise.

Let us now take 3‘ and h: to be the sum over all blocks of the seperate quantities defined

previously. If we integrate the noise out we obtain the probability density function for w and

r g'ven the data D,

ail-n"

[1 — V .lefl'reys prior
190mm) 0: { [1 _ E] 2M”.

Uniform prior

where fit = mNb. If N is large, then the two above expressions will obviously be very similar.

The objective is therefore to maximize P(w,'r|D) as given above.

3 Results

For the purpose of illustrating the Bayesian technique, the following simulations employ a 10-

element array with an interelement spacing of 60m. The frequencies of the two sources used

are both IOHz and the sampling frequency is IOOHz. In a realistic situation the operating and

sampling frequencies can, of course, be much larger and the interelement spacing much smaller.

In order to avoid spatial aliasing, the interelement spacing must be less than half a wavelength.

The following data were simulated by generating nusoids with given amplitudes, frequencies

and phases and adding to this pure gaussian white noise uncorrelated from sensor to sensor,

and the amplitudes and phases were made to vary slowly with time. The sources are assumed

to be in the far field of the array. The signal-tonaise ratios, S/N, quoted in the following are

defined by:
7

S/N =1olog,°[ ° "' ]
aanm‘n

 

where 02“, is the variance of the signal taken over the whole time series e.g. g}- IOT f’(t)dt, and

o’nm is the variance of the normal distribution from which the random noise is generated. Just

two cases are shown here as an illustration of the performance of our method versus MUSIC,
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using S[N ratios of -3dB, and -10dB. Each case has the sources separated by i2 degrees, were :l:

refers to the positions of the sources either side of the normal to the array. and deals with data

from two sources of identical frequencies (v1 = Id = lOI'Iz), such as might occur from a multipath

situation. In this case we must use full aperture smoothing (PAS) with the MUSIC algorithm,

which involves averaging the data covariance matrix and its reversed complex conjugate. To

locate the sources we must search for the peaks in the joint pdf. However, in the plots of

log P(1'[D) which follow, the estimates correspond to the minima, as the maximum map value

has been subtracted from all pixel values - the true peak therefore occurs at zero. This was

done to avoid very large numbers around the regions of interest.

We can display the Bayesian results graphically using a probability density function (pdf)

contour plot in the 01 — 0; plane which effectively shows the likelihood surface (with nuisance

parameters integrated out). Figure I. shows the results for —3 dB at a separation of i2

degrees, and compares the contour plot of log P(r|D) with the line plot produced from the

MUSIC algorithm, and in both cases a total of 1024 snapshots were used. Figure 2. shows

the corresponding results for -10 dB for the same separation as before, and for a total of 2000

snapshots.

At -3 dB the Bayesian technique is able to resolve and locate the 2 sources using 1024 snapshots

whereas MUSIC can barely resolve them. At -10 dB the results are very much more striking;

The Bayesian method once more produces accurate position estimates for the two sources but

does need considerably more snapshots when the noise is this high. MUSIC however, fails

completely in this case.

These results are meant to g've a rough idea of the performance of the Bayesian methods

compared to the MUSIC algorithm, which is commonly used as a benchmark against which

one evaluates alternative methods. A more comprehensive study will be published elsewhere,

and will consider the behaviour of the proposed method under a variety of circumstances. For

example, it is of interest to us to consider how the method behaves as the number of snapshots

taken is decreased, the capability of the method to identify frequencies as well as positions, the

behaviour with non-equispaced arrays, etc. In this present paper, our objective is simply to

present a few cases Which illustrate the potential of the technique, and it is clear from the above

results that in terms of intrinsic resolution ability, the method shows considerableimprovements

over standard eigen-decomposition techniques.

4 Conclusions

It has been shown in this paper that Bayesian inference methods have significant advantages

over MUSIC and other eigen-decomposifion methods in the cases of low signal-to-noise ratios

and closely separated sources. An attraction of the method is that it needs no modifications or

alterations to deal with the cases of coherent and/or fully correlated sources and the framework
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also allows one to estimate frequencies andspatial positions simultaneously without change in
the formulation.

There are a number of extensions and modifications that could enhance the technique still
further. The first obvious modification that is currently under investigation is to allow the

number of sources to be estimated (model order selection problem), and also to allow for
coloured Gaussian noise, and the use of an iterative scheme to cancel out already detected

sources thus allowing weaker sources to be detected one by one,

Work is in progress to evaluate the performance of the mary'nal statistical estimators discussed

in this paper, compared with the performance of maximum likelihood and maximum aposteriori
estimators, and also to compare the performance with the Cramer-Rao lower bound, and the

Berankin bound at low signal to noise ratios.

Figure 1. Two ~3d3 sources placed at dsnlion ends at 88' and 92'; each i‘nsl had a
frequency d NHL n) shows the results dthe BML technique using 1024 snapshots. Contours
ding P(r|D) are shown on s 30 x N gid. h) shows the results If MUSIC with FAS. 1024
snapshots were used with n 0.? stepsise.

 

Figure 3. Two -lOdB sources pinned at elevation sndes d 88‘ and 02'; each signal had a
frequency a! 1011:. s) shows the results of the BML technique using 2000 snapshots. Contou-
d 1°! PMD) are shown on s :0 I so 95d. h) shawl Ihe results «I MUSIC with PAS. sass
snapshots were usedwith s 0.2' stepdse.
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