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I INTRODUCTION

During the last decade, there has been much activities on chaotic theory as chaos has been observed in

various physical phenomena, in turbulene, in laser power output, in chemical reactions,in condensed

matter physics, astrophysics, vibration etc. The study of chaos can throw insights into nonlinear
phenomena and help to solve nonlinear problems. During the past few years, there has been much
activities to study the relationship between chaos and 1/f noise, a type of stochastic noise, Recently, it
has been extended to random noise in general, not just limited to this special type of noise. Papers have

been published now on the application of chaotic theory to signal processing such as the analysis of

industrial noise [1] and the filtering of a background random noise from chaotic signal [2,3]. The

applications are to turbulence, to helicopter noise, communication etc. In view of the potential
application of chaotic theory to signal processing, in this paper we propose the application of chaotic
theory to nonlinear noise and vibration measurement and analysis.

2. IDENTIFICATION OF CHAOS

It is necessary for a mice and vibration signal to be tested first for the existence of chaos. Chaos means

exponential sensitivity to initial conditions and therefore occurs, by definition, if there is a positive
Lyapunov characteristic exponent (LCE). The LCE associated with a trajectory gives the average rates

at which nearby trajectories diverge. Another tool in testing for chaos is to compute power spectra. If
the motion is quasiperiodic the spectrum of any coordinate is discrete, whereas chaotic motion will
exhibit broadband power spectra. The temporal behaviour of a function y(t) is quasiperiodic if its
Fourier transform consists of sharp spikes, i.e. if

n .

yto= Z gem" (I)
J' =1

Quuiperiudic motion is regular. That is, quasi periodicity, like periodicity. is associated with a
negative or zero Lyapunov exponent. Quasiperiodic motion can certainly look very complicated and
seemingly irregular, but it cannot be truly chaotic in the sense of exponential sensitivity to initial
conditions. In panicular, the difference between two quasiperiodic trajectories is itself quasi periodic
and so we cannot have the exponential separation of initially close trajectories that is the hallmark of
chaos.
Since quasiperiodicity implies order, it follows that chaos implies non-quasiperiodic motion. Thus

chaotic motion does not have a purely discrete Fourier spectrum as in (I) but must havea broadband,
continuous component in its spectrum as in Fig, l
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Fig. 1 Typical frequency spectrum of some coordinate of a chaotic system,

Fourier analysis is therefore a very useful tool in distinguishing regular from chaotic motion and
furthermore it is generally much cheaper computatiOnally than Lyapunov exponents,

Another test for chaos is to plot the probability density function of the signal to find the existence of
multi—maxima which is a characteristic for chaotic behaviour. The examples of amplitude probability
density functions and waveforms connected with l.th are shown in Fig. 2 below:
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Fig, 2

But it has to be emphasized that the sure way of identifying chaotic behaviour is to compute the LCE.

3. FILTERING 0F CHAOTIC SIGNAL EMBEDDED IN A RANDOM NOISE

In the analysis of nonlinear industrial noise using chaotic theory, one has to separate the noise into two

portions. the chaotic signal and the random noise. Various methods can be used as shown below:

3.1 Maximum Likehood Processing

in the signal separation problem, we observe the stale of a chaotic system through an observation

function.h, and in the presence of another signal. i.e.,

y. = MI.)

0. = Y. + w. (2)

where y" e R‘ is the output from the chaotic system and a), is the other signal. The signal separation

problem is to estimate both y. and (t),l given the observations 09%I ={00,0,‘,---,0,,_I). Three

categories of signal separation problems:

 
1. When both the state update functionj, and the observation function,h, are known.

2. When neither the state update nor the observation function is known but we have available a
"reference observation". This observation is the result of observing the nonlinear dynamical system'
without the presence of another signal but in a case in which the initial conditions of the nonlinear

dynamical system are different from those for the case in which we observe the signal plus interferences

 

   
 

3. When neither the stale update nor the observaiton function is known. When both the state update and

the observation functions are known and the other signal is white Gaussian noise, with a noise
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correlation matrix 63,] , then it is possible to determine bounds on the performance of signal separation

algorithms. In this case the maximum likelihood solution is given by a trajectory {§o,§,,~-,§,,_,) that

obeys the constraints of the known dynamics, i.e. 3‘", = f($'_) and minimizes the different between the

observed signal and the predicted observations, iie. 2|h(§,) - 0,,

 

1

This is equivalent to estimation of

the initial conditiOn So which maximizes

_ l A 2

togtetooss ti,» = $1le ($21104 " C ‘ (3)
"-0

Analysis of the likelihood function. Eq. (3), for a chaotic system shows some interesting properties, for
the logistic map. The likelihood function contains multiple narrow maxima, The ,narrowness of the'
maxim: is related to the positive Lyapunov exponents of the system. The presence of multiple maxima
occurs because the nonlinear dynamics folds state space trajectories together.

 

3.2 Signal Separation using Markov Model _
The signal processing method used is hidden Markov models. We assume that a sequence of

observations are given: 00,” = {00,0,,---,0,,). where each observation is the sum of the output of the

chaotic system and another signal, i.e. 0,, = yn + w,I and we wish to generate the best estimaies for y"

and w, given the observations. For our initial work, we assume that the other signal, w, can be

modeled as white Gaussian noise with variance a: We define two signal estimation algorithms - one

based on a maximum likelihood state sequence estimation approach and one based on a maximum
aposteriori approach.

I. The maximum likelihood signal estimation approach first estimates the most likely state sequence
given the ohsewation. i.e.

6m = arg max H (Um Iona!) (4)

(lim

This is computed using the Viterbi algorithm. The signal y, is then estimated as the expected value of

 

    
  

    

     

      

    

y, given the observations and the most likely state sequence, i.e;

9. = Ely" l0,,fi.]

N 1 “

=m(&.)+—,a‘q"a (a )+a, (0. "m((7,.)) (5)
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where m(fi,) and (T2 ((7.) are the mean and variance oftlte most likely state at time index n.

2. In the maximum apostcriori approach we attempt to estimate the signal y" as the expected value of

y_ given the observations. i.e..

5'" = ED’. low]

= ZED. l0.,q.]B(q.m l0”) (6)
'I l

where the summation is performed over all possible state sequence, qt", and where EU" [Oqu] is
computed according to Eq. (5)

We note that in the case of a linear dynamical system. driven by white Gaussian noise, both the
maximum likelihood and the maximum aposteriori approaches converge to Kalman smoothing as the
number of states goes to infinity. An application of above method is to helicopter noise buried in
chaotic noise,

3.3 Application of Convolution to Signal Separation
Convolution can be applied to signal separation. Convolution is filtering and we will consider for the
effects of convolution on the two parameters commonly used in the description of chaotic signals- the
Lyapunov exponents and the fractal dimension of the attractor. In order to dertermine the effects of
filtering on Lyapunov exponents. we represent the time series Z[n] as the scalar observation of a
composite system of the original nonlinear dynamics and the filtering dynamics:

x[n +1] = F(x[n])

w[n +1]: Aw[n] + bG(x[n]) (7)

Z[n] = c'w(n) ,
The matrices A,b and c are chosen to represent a minimal realization of the system and w[n] the state or"
the filter at time n. We also assume that the overall composite system is minimal in the sense that there
is no pole zero cancellations between any linear component of the original nonlinear system and the
cascaded linear system. The invariance of the Lyapunov exponents under smoothing invcnible
coordinate changes allows usexamine certain properties of the filtered signal in this augmented state
space with the assurance that the results carry over to the embedded state space.

Convolution also affects the capacity dimension. The filtering of noisy chaotic data to reduce noise will
cause errors in fractal dimension estimates. The effect of convolution on the capacity dimension can be
examined using the time delay construction. The time delay constntction defines a transformation of
IR”, the state space of the original nonlinear system, to IR", the space consisting of the reconstructed
vectors. The effect of filtering on the capacity dimension of the observed signal Z[n] depends upon the
nature to this transformation.
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4.COMPUTATION 0F FRACTIONAL HARMONICS

It has been noted by Wei Rongiue et al (4) that chaos is caused by the presence of fractional

subharmonics during their experiment on nonpropagating solitons and their transition to chaos. Hence

to perform spectrum analysis of chaotic signal, it would be necessary to compute the fractional

subharmonics. This can be done by using the theory of multiple scale expansion valid for the solitons.

This requires a fractal analysis by applying a multiscale second-order statisitical method. For a fractal

surface, there are relationships among fractal dimension. sealing, power' spectntm, area size and

intensity difference. Fractional subharmonics has fractal nature and one needs to estimate the fractal

dimension and transform the scale of frequency spectrum to scale of fractal dimension. The fractal

dimension can be determined following the work of Pentland [5] who computed the Fourier transforms

of an image, determined the power spectrum and used a linear regression technique on the log of the
power spectrum as a function of frequency to estimate the fractal dimension.
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