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Coordinate transformation theory offers an unconventional approach to redirecting elec-

tromagnetic or acoustic fields at will, and it is expanded to the finite embedded coordi-

nate transformations, which gives a significant amount of flexibilities to coordinate 

transformation design. In this article, the finite embedded coordinate transformation 

theory is introduced into the elastic dynamic equation of flexural waves, a design of 

bend waveguide to control flexural waves to bend at arbitrary angel is proposed. The 

formula to describe the transformed materials properties in an elastic thin plate is ob-

tained, which contains anisotropic heterogeneous Young modulus and a radially de-

pendent mass density. Through homogenization of layered periodic composite materials, 

the anisotropic materials are dispersed into discrete layered isotropic materials. Full-

wave simulations by using the finite element methods are performed to analyze the be-

havior of the flexural waves in the finite embedded coordinate transformation device. 

Results show that the waveguide consisting of 10 layers alternating two types of iso-

tropic elastic materials works over the frequency range [2000, 8000] hertz, it can realize 

broadband effect on flexural waves control. The flexural waves are redirected to bend at 

any angle as design by the waveguide, without reflections at the entrance or exit bound-

ary to free space. The finite embedded coordinate transformation theory is useful on 

flexural waves control. The study can provide technological approaches to flexural 

waves control in thin plates, and it is expected to provide potential applications in isolat-

ing structures from vibrations. 

 

1. Introduction 

In 2006, Pendry et al.[1] creatly proposed the coordinate transformation theory, once the theory 

of coordinate transformation has been put forward, it has aroused wide concern of scholars in relat-

ed fields. To combine the coordinate transformation theory with electromagnetic metamaterials 

study, which makes it possible to achieve the characteristics that traditional electromagnetic devices 

difficult to achieve, and electromagnetic invisible cloak and other novel electromagnetic wave con-

trol device can be design with the coordinate transformation theory.  

D. Schurig[2] designed the electromagnetic cloak in the microwave band in 2006 and carried out 

corresponding experiments. Zhang et al.[3] took use of calcite, the anisotropic optical material, to 

prepared invisible carpet, which makes 2mm thick objects stealth in the optical band.Cui et al.[4] 

designed a magnetic electromagnetic "black hole" based on electromagnetic materials, and it can 

achieve the absorption of electromagnetic waves in a particular frequency band. Cummer et al.[5] 

studied the acoustic equation in the fluid, and the dynamic comparison shows that the kinetic equa-
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tions of the two are exactly the same in form. Therefore, the sound waves in the fluid can be con-

trolled by the coordinate transformation theory[6]. 

Electromagnetic waves and elastic waves have the characteristics of interference, diffraction, and 

researchers in various countries also concentrated their attention on the question to whether the the-

ory of coordinate transformation can be introduced into the elastic wave control. In 2006, Milton et 

al.[7] analyzed the coordinate transformation of the elastic dynamic equation. It is shown that the 

general elastic wave equation does not satisfy the form invariance of the coordinate transformation 

because it includes both the longitudinal wave and the transverse wave terms and the two are cou-

pled with each other, that means the general elastic wave cannot be controlled by the coordinate 

transformation design theory. Farhat et al.[8] studied the feasibility of introducing the coordinate 

transformation theory into the thin-plate bending wave control for the first time, and demonstrated 

the questions to the design of the thin-plate bending wave invisible cloak.  

In 2008, Rahm et al.[9] further proposed a finite embedded coordinate transformation, The exten-

sion of this theory provides more flexibility for coordinate transformation design. 

In this paper, the finite embedded coordinate transformation theory is introduced into the elastic 

dynamic equation of flexural waves, distribution of materials in an elastic thin plate is calculated, 

which can make flexural waves deflect at any angle. The simulation model of the waveguide design 

is built, and it is analyst with finite element methods. 

2. Principle description 

It is assumed that the dielectric constant and the permeability of the homogeneous medium are ε  

and μ , respectively. After the coordinate transformation, in the space under the new coordinate 

system, the dielectric constant ε̂  and the permeability μ̂  satisfy: 
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Where  zyx ,,  and  wvu ,,  represent the coordinates under Cartesian coordinate system and arbi-

trary curve coordinate system, respectively. The relationship between the two is: 

 

 

 













zyxqw

zyxqv

zyxqu

,,

,,

,,

3

2

1

                                                                               

(2) 

 J  is the Jacobian matrix, and its representation is: 
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(3) 

After the coordinate transformation, the material parameters such as the dielectric constant and 

the permeability are converted from the constant form of the uniform material to the general tensor 

form, and the material parameters show anisotropy in the new coordinate system. 

For the bending wave in the thin plate, the kinetic equation is the fourth order partial differential 

equation [10], writes: 
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(4) 

Where D  is the plate stiffness, 2  is the Laplacian operator,  h  is the thickness of the plate, ρ  is 

the density of the plate, w  is the deflection of the plate, and q  is the external force perpendicular to 

the plate. 
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To introduce  the coordinate transformation shown in Fig. 1 into the equation above. 
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Figure 1: Sketch of the coordinate transformation: (a) Before the coordinate transformation; (b) After 

the coordinate transformation; 

The coordinate transformation can be expressed as the following transformation equation: 
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Where the rectangular area of length 0L  is transformed, θLC  , θ  is the angle of deflection. 

 yx,  is the coordinate in the original coordinate system, and  θr ,  is the coordinates in the new 

coordinate system. 

The transformation matrixΛ  under the coordinate transformation can be expressed as: 
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Where TJ  is the transpose matrix of J , and 
xrrxxx JJJ   . 

To combine formula (6) with formula (3) and formula (5) to get the transformation matrix: 
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According to Milton and Farhat's theory [7, 8],  θrU  ,  the displacement of the thin plate on the 

normal direction of the plane satisfies: 

    04
0

111   UγβUξβξ                                              (8) 

Where 0
2

00
4
0 Dωρhγ  , ξ is a second diagonal tensor,   is a variable associated with the density 

of the material, 21 Eξ ˆ , 21 ρβ .  θr EEdiagE ,ˆ    is the tensor form of elastic modulus [11]. 

Substituting formula (8) into formula (7), the material parameters of the thin plate in the spatial 

distribution can be expressed as: 
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According to the equivalent parameter theory of layered periodic composites, elastic modulus an-

isotropic homogeneous material can be equated by alternating layered media A and B[12,13].As is 

shown in Fig. 2: 
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Fig.2. Sketch of the anisotropic lamellar medium 

The equivalent relationship can be written as[8]: 
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Assuming η =1, Further to get: 
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The design of the bending waveguide can be realized by using the material parameters shown in 

formula (11). 

3. Numerical results and discussion 

The simulation model of bending waveguide is built as follows: 

θ =π /6，L =1m，
1R =2m，

2R =3m . The size of the thin plate is 550.01m, 0ρ =2700 3mkg  

0E =72GPa. Poisson's ratio is 0.3. The anisotropic material between 
1R  and 

2R , is separated into 10 

layers, each layer contains one homogeneous anisotropic material, replaced by A and B these two 

isotropic materials. 

Changes of 
AE  and 

BE  from 
1R  to 

2R  along the radial direction is shown in Fig.3. 

 
 Fig.3. The elastic modulus

AE and
BE change from

1R to
2R  

Using COMSOL for simulation, the excitation source is a sinusoidal excitation between A and B , 

perpendicular to the plane of the plate, the dynamics simulation results are shown in Fig.4: 
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(a)                                                                              (b) 

         

(c)                                                                            (d) 

Fig.4. Simulations of the bending waveguide at 2000Hz and 8000Hz(a) The normal displacement of thin 

homogeneous plate at 2000Hz; (b) The normal displacement of wave-beam with waveguide control at 

2000Hz; (c) The normal displacement of thin homogeneous plate at 8000Hz; (d) The normal displacement of 

wave-beam with waveguide control at 8000Hz 

It can be seen from Fig. 4(a) ~ Fig. 4(d), the bending wave is deflected according to the bending path re-

quired by the theoretical design. As is shown in Fig. 4(b) and Fig. 4(d) that the vibrational wavefront of the 

coordinate transformation region always remains flat, the deflection angle is the theoretical design value θ , 

and the energy of the wave is concentrated in the coordinate transformation area, and there is no scattering 

from the left and right borders. In addition, after the coordinate transformation area, the bending wave con-

tinues to travel along the line, it can be inferred that the bending waveguide can maintain the propagation 

directivity of the bending wave. And the waveguide can still guide the wave to spread without reflection in a 

wide frequency range, it has a strong ability on wave field control. 

4. conclusion 

To summarize, in this paper, the finite embedded coordinate transformation theory is introduced 

into the elastic dynamic equation of flexural waves, distribution of materials in an elastic thin plate 
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is calculated, which can make flexural waves deflect at any angle. The results of the dynamic simula-

tion analysis show that the finite embedded coordinate transformation design can effectively control the 

bending wave in thin plate with ultra-wideband characteristics, the research of this paper is expected to pro-

vide a new technical approach to the vibration and noise reduction of thin plate structure. 
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