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The hydraulic dynamic anti-resonance vibration isolator (DAVI) which is composed of two metal 
bellows and a supplementary spring possesses an anti-resonance frequency, at which the pressure 
variation in the fluid induced by the inertial force is in opposite phase to the spring force of the 
isolator. A schematic design of the multi-layered DAVI which consists of multiple single layered 
DAVIs is proposed and the corresponding mathematical model is developed. The analytical pre-
diction of the vibration transmissibility of the multi-layered DAVI suggests that the isolation fre-
quency range can be tuned by placing the poles and zeros properly. This work focuses on devel-
opment of a design method for high frequency isolator with the lowest possible lower cut off 
frequency, as well as band stop isolator with the widest possible stop-band bandwidth. For this 
purpose, the cut off frequencies together with the stop-band bandwidths of the single layered 
DAVI and the multi-layered DAVI are formulated respectively in a general framework. Optimi-
zation process is then couducted to achieve a minimum lower cut off frequency for the high fre-
quency isolator and a maximum stop-band bandwidth for the band stop isolator, respectively. It 
is demonstrated numerically that the lower cut off frequency and stop band bandwidth can both 
be flexibly designed with structural parameters so as to meet the requirements of high frequency 
isolation and band stop isolation applications. 

 Keywords: cut off frequency, dynamic anti-resonance vibration isolator, band stop isolation, 
high frequency isolation, cut off frequency 

 

1. Introduction 

This paper discusses undamped uniaxial vibration isolators in case of harmonic base excitation. 
For a passive vibration isolator, stiffness and bandwidths properties are the main two topics. Rivin 
and Harris [1,2] demonstrated that passive vibration isolators performed poorly in low frequency 
isolation applications owing to stiffness lack. It is also mentioned that this factor affects the active 
vibration isolators [3]. Passive vibration isolators usually have quite narrow bandwidth, however, 
bandwidths of the passive vibration isolation isolators have not been analysed in detail [1,4,5].  

The term “high frequency isolator” used in this paper means that the isolator achieves isolation in 
the frequency range beyond a particular frequency known as cut off frequency. These kinds of isola-
tors are used in gravitational wave detection systems [6,7]. The term “band stop isolator” is used to 
imply that the isolators achieve isolation in a frequency range denoted by stop-band. That is to say, 
the maximum transmissibility of this kind of isolator in the stop-band should be less than a particular 
number. Analogously, band stop isolator isolators are regarded as notch filters. Therefore, the cut off 
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frequency and stop-band bandwidth of the isolators can be designed by optimally placing poles and 
zeros of the multi multi-degree-of-freedom (MDOF) isolation system.  

In the 1960s, Flannelly developed a new kind of isolator which used inertial coupling to obtain 
anti-resonance frequencies at which the isolation was achieved [8-11]. It is proved that the hydrau-
lically leveraged one offers a better solution for the design of low cut off frequency passive isolators 
with high static stiffness since the hydraulic leverage has a compact arrangement and higher leverage 
ratio than a mechanical one[12, 13]. DAVI has the potentials in design of passive vibration isolators 
of lower cut off frequencies and larger bandwidths if they are designed properly [14].  

In this paper, cut off frequency formulations will be done for various low-pass filter type vibration 
isolators and optimum designs will be obtained that outperformed the existing low-pass filter type 
isolators. Also, bandwidths of band-stop filter type vibration isolators will be formulated. Some op-
timum designs will be put forward to obtain larger bandwidths. The discussion will be conducted 
based on the hydraulic anti-resonance vibration isolators. 

2. Dynamic models of hydraulic DAVIs 

2.1 SDOF hydraulic DAVI of type I 
The hydraulic anti-resonance vibration isolators are similar to the well-known lever-type anti-res-

onance vibration isolators. The hydraulic anti-resonance vibration isolator shown in Fig. 1 consists 
of two metal bellows and an additional spring. The bellows form a self-contained unit which is com-
pletely filled with a low viscosity fluid. The equation of motion is as follows: 

    2 2 2
0 01 1x x y y                                                       (1) 

 
Figure 1: The hydraulic anti-resonance vibration isolator 

Here, y is the displacement of the base, x is the displacement of the load, z is the displacement of 
the isolator mass, k is the mount stiffness, m is the mass of the load, mis is the isolator mass, Ap is the 
effective cross-sectional area of the primary bellows and As is the effective cross-sectional area of the 
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According to definition,   is greater than one. That means the zero is always larger than the pole. 
The affirmatory relationship may bring many benefits to the design. Then, the base-to-load transmis-
sibility ( )T   is obtained as 
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2.2 MDOF hydraulic DAVI 
A n-dof isolator composed of the hydraulic anti-resonance vibration isolators is shown in Fig. 2. 
 

 
Figure 2: Base excited n-dof hydraulic anti-resonance vibration isolator 

In Fig. 2, y is the displacement of the base, ݔ௜ is the displacement of the ith stage, ݉௜ௌ is the mass 
of the ith stage, ݉௜ is the mass of the ith isolator, ߙ௜ is the area ratio of the ith isolator, and ݇௜ is the 
spring stiffness of the ith stage. The equations of motion for this system in matrix form are 
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we can get n resonance frequencies by solving the eigenvalue problem of the above equations. The 
n anti-resonance frequencies are in the same form 
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Hence, the transmissibility can be defined as 
2

1
0

2

1

(1 ( / ))
( 1)

(1 ( / ))

n

c zi
ni

n

c pi
i

T
 

 





 






                                            (6)  



ICSV24, London, 23-27 July 2017 

 

4  ICSV24, London, 23-27 July 2017 

3. High frequency vibration isolator  

3.1 Cut off frequency 
If we regard the isolators as low-pass filters and the isolator acts as high frequency vibration iso-

lator, isolation occurs when the excitation frequency is larger than cut off frequency under the maxi-
mum allowable force or displacement transmissibility. Cut off frequency will be formulated by two 
non-dimensional parameters: 0T and  , 0T is the maximum permissible transmissibility during the iso-

lation frequency range, and  is the ratio of isolator mass to load mass. According to Fig.1, we can 
first formulate the cut off frequency of a SDOF hydraulic dynamic anti-resonance vibration isolator.  

It can be seen in Eq. (6) that as ω→∞, T(ω)→ . Assuming finite z  and non-zero p , then

 T  converges to a positive number. Therefore, given a maximum allowable transmissibility level, 

0T ,  T   should converge to 0T as ω→∞. Thus, cut off frequency, c , can be determinded as   2 2
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3.2 Optimization of high frequency isolator 
There is the opportunity of minimizing the cut off frequency through optimization in an n-dof 

isolator. The aim of optimization is to group the n zeros after the highest pole. In that case, there will 
be ( 1)n   local peaks in the transmissibility function until the function converges to a constant value. 

Let us index the peaks in increasing order and let i
p  be the ith peak frequency. The statement of the 

optimization problem is as follows: 
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There are (4 1)n  variables and (n+2) equality constraints in this problem. In order to obtain some 
quantitative results, let us try to solve the optimization problem for the case of n=2. There are seven 
variables in this problem, which are 1m , 2m , 1k , 2k , 1 , 2 , 1

Sm . Let us focus on the variable 1
Sm . This 

variable represents the mass of the first stage. The product of the poles of this system is given by 
det(K)/det(M). Hence, in order to lower the values of the poles, det(K)/det(M) should be decreased. 
Since K is independent of the variable 1

Sm , let us just consider det(M). According to Eq. (4), det(M) 

can be calculated as 
2 2 2 2

1 1 1 2 2 2 2 2 2 2) ( ) ( 1) )( ( ) ( ( 1d )e ( )t Sm m m m m m          M （                (8) 

1
Sm  should be set to zero according to Eq. (8). After elimination of the variable 1

Sm , the number 

of variables in the optimization problem reduces to 6, which are 1m , 2m , 1k , 2k , 1 , 2 . There are six 

2 2/p z 
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variables and four equality constraints. Let us call the variables 2m , 2k , 1 , 2 , as state variables that 

satisfy the four equality constraints. The remaining two variables, 1k  and 1m , are called the decision 

variables. The state variables 2m  and 2k  can easily be solved in terms of the decision variables using 

equality constraints 3h  and 4h , respectively. 1  and 2  can easily be determined via Newton’s 

method using the equality constraints 1h  and 2h . To determine the values of the decision variables 

that minimize c , genetic algorithm based on Matlab software can be used. Results are shown in 

Tab.1 and Fig. 3 when 1, 1k m  . 
Table 1:  Optimization result for

0=0.1 2 =0.05N T ， ，  

1m  2m  1k  2k  1  2  

0.0294 0.0706 1.6843 5.5369 17.3612 12.7759 

 
Figure 3: Cut off frequency comparison of the 2dof optimum design 

 
In this case, the normalized cut off frequency of the Type I isolator can be found to be 4.69. More-

over, the normalized cut off frequency of the 2-dof quasi-optimal design is calculated as 4.27. Besides, 
pole-zero separation is not as critical as before. 

4. Band stop vibration isolator  

Band stop vibration isolator works in a frequency range denoted by stop-band. In this paper, the 
frequency range is called bandwidth. We will discuss the bandwidths of hydraulic anti-resonance 
vibration isolators at low frequencies. In order to make comparisons, a new hydraulic anti-resonance 
vibration isolator of type II is introduced. The isolator presented in Fig.1 is called type I. The same 
as above, we formulate the band stop bandwidths by ଴ܶ and ߙ.  

4.1 Type II hydraulic DAVI 
The hydraulic DAVI of type II is shown in Fig. 4.  
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Type II hydraulic anti-resonance vibration isolator 
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Similar to the previous analysis, the order of the pole and zero is changeable.                                                          (9)  

Bandwidth of a type II isolator can be formulated as 

                                                       (10) 

4.2 A design of a 2-dof hydraulic isolator 
As mentioned before, both type I and type II isolators have single anti-resonance frequency in their 

stop-bands. A natural way of increasing the bandwidth of a stop-band is to place additional anti-
resonance frequencies. The aim of this part is to synthesize an isolator which has two anti-resonance 
frequencies placed between two resonance frequencies. It has been proven that the type I isolator 
always offers a lager zero than pole while the zero-pole position of a type II isolator is uncertain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: 2-dof hydraulic anti-resonance vibration isolator 

Fig. 5 is a schematic design of a 2-dof hydraulic isolator. To obtain the desired pole-zero order in 
the 2-dof system, one can choose a Type I isolator that has pI zI  and a Type II isolator, which 

always has zII pII   such that 

pI zI zII pII                                                              (11) 

In Fig 5, y is the displacement of the base, xi is the displacement of the ith stage, im  is the mass of 

the ith isolator, m is the mass of the load, i is the lever ratio of the ith isolator stage, and ik  is the 

spring stiffness of the ith stage. the transmissibilit is deduced as  
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On the other hand, let us compare 2p and pII . pII is the higher value pole of the 2-dof system, 

which has a mode shape such that the springs are working antagonistically, that is, one is in tension 
while the other is in compression. This increases the force on the lower stage, which implies that 

2pII p  .Therefore, the order of the poles and zeros of the 2-dof system is as follows: 

1 1 2 2p z z p                                                                 (14) 

4.3 Optimization of band stop vibration isolator 

Before stating the optimization problem, let us make some definitions. Given 0T  by Eq. (12) and 

given the maximum allowable transmissibility in the stop-band as 0T  , 1s  and 2s  are the two solu-

tions of 0( )T T   . Since there are two zeros in the stop-band, there is a frequency between the two 

zeros at which transmissibility attains a local maximum. Let us call this frequency as m .Here is the 

statement of the optimization problem 
Maximize  
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There are six variables in this problem, which are 1m , 2m , 1k , 2k , 1 , 2 .Regard 2m , 2k , 1 , 2  as 

process variables and 1m , 1k  as decision variables. Solve for 2m  and 2k  according to 2h  and 3h , 1  

and 2  can be established by 1h  and 4h .Given 0N T， ， ,take m and k  as 1.Optimazation results 

are shown in Tab. 2 and Fig. 6.  
Table 2: Optimization result for

0=0.1 2 =0.05N T ， ，  

1m  2m  1k  2k  1  2  

0.0198 0.0802 1.2826 4.5384 15.3814 15.7640 

  
Figure 6: Bandwidth comparison of the 2-dof optimum design (—)and a Type II isolator (--)  
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It can be seen in Fig. 6 that there are two zeros in a 2-dof isolator system. Given the maximum 
displacement transmissibly, a larger bandwidth can be obtained by presenting the two zeros. The 
optimum design has a 2.26 times bandwidth than type II design.  

5. Conclusions 

In this paper, the vibration transmissibility of two types of DAVI is deduced. It is found that the 
order of the zero and the pole of the DAVIs can be controled by selecting proper structure parameters. 
By coupling different type of DAVIs, high frequency vibration isolator and band stop vibration iso-
lator are obtained. It is demonstrated that the minimum lower cut off frequency for the high frequency 
isolator and the maximum stop-band bandwidth for the band stop isolator can be tuned by optimized 
design of the DAVIs. The methodolage proposed in this paper will benefit the design of high fre-
quency isolator with the lowest possible lower cut off frequency, as well as band stop isolator with 
the widest possible stop-band bandwidth. 
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