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An efficient analytical spectral dynamic stiffness (SDS) method for exact modal analysis of elas-
todynamic problems is presented in this paper. The general solution satisfying the governing
differential equation exactly is first derived by applying the proposed modified Fourier series.
Then the SDS matrix for an element is formulated symbolically using the exact general solution.
The SDS matrices are assembled directly in a similar way to that of the finite element method,
demonstrating the method’s capability to model complex structures. Any arbitrary boundary con-
ditions are represented accurately in the form of the modified Fourier series. The formulation is
applicable to both dynamic response and wave propagation analyses; and the method is applied
to elastodynamic problems with simple as well as complex geometries. When applied in modal
analysis, the Wittrick-Williams algorithm is used as the solution technique where the mode count
problem (J0) of a fully-clamped element is resolved. The proposed method gives exact solution
with remarkable computational efficiency, covering low, medium and high frequency ranges. All
results from the theory in this paper are accurate up to the last figures quoted to serve as bench-
marks. This new method offers an idea tool for parametric and optimization studies of structures,
especially in the vibro-acoustic analysis within mid- to high-frequency ranges.

Keywords: Spectral dynamic stiffness method, modal analysis, whole frequency range, elastody-
namic analysis, Wittrick-Williams algorithm

1. Introduction

Dynamic analysis is a major consideration during the design, construction and operational phases
of structures such as high-speed trains, auto-mobiles, ships, submarines, buildings, bridges, circuit
boards, amongst many others. The dynamic behaviour of such structures can be generally classified
into categories within high, medium and high frequency ranges. Different types of available methods
are limited to different frequency ranges. In general, dynamic analysis to analyse them is performed
by the well-developed finite element method (FEM). The FEM is no-doubt versatile to handle com-
plex geometries, but it is mostly confined to dynamic analysis within relatively low frequency range.
One of the reasons for this is due to the approximate shape functions adopted in the analysis. The dy-
namic characteristics of structures in the medium to high frequency ranges are without doubt crucial
and becoming increasingly important. For example, structures must be designed to sustain complex
loading conditions (e.g., impact and blast) which may have both low and high frequency contents.
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The vibroacoustic behaviour in the medium to high frequency ranges covers the most hearing sen-
sitive range (500Hz-20kHz) for human being, thus the control of noise arising from structures in
automotive, aeronautics, marine and electronic industries becomes very important. Furthermore, the
structural health monitoring aims to perform non-destructive evaluation through the integrated actu-
ators and sensors, which essentially relies on efficient algorithms to solve related inverse problems
within medium to high frequency ranges. Unfortunately, existing modelling techniques such as the
conventional FEM are somehow inadequate and not fit for the purpose. Therefore, one should resort
to alternative methods. The dynamic analysis within the high frequency range is generally performed
using energy-based method such as the statistical energy analysis (SEA) [1] and dynamic energy anal-
ysis (DEA) [2], which are based on a number of assumptions. However, these assumptions restrict
their applications only to the high frequency range, and the application scope of the SEA and DEA is
often questionable. some parameters are crucial to the SEA such as the coupling loss factors which
are not always easy to estimate. Other alternative methods include the wave based method (WBM),
spectral finite element method (SFEM) and wave finite element method (WFEM). The WBM has
achieved great success [3], but it is usually confined to steady-state dynamic problems in the mid-
frequency domain. The SFEM [4] is used in time domain response analysis but it is restricted to
prismatic plates with simple boundary conditions. The WFEM [5] on the other hand, when applied
within medium to high frequency ranges, seems only applicable to infinite periodic 2D structures for
which the periodicity simplifies the problem significantly into a quasi-1D problem.

No satisfactory method seems to be available to cover the entire frequency range for plate struc-
tures. One exception is of course, the dynamic stiffness method (DSM) which encompasses both
modal [6–8] and response [9] analyses. The method gives exact dynamic solutions within all fre-
quency ranges of interest, which can be used as benchmark solutions for other methods. However,
the DSM is seriously restricted to prismatic plate assemblies with the assumption that two opposite
sides of each plate component must be simply supported [6–9], which prevents the DSM applications
in a wider context. In order to remove the above restrictions and at the same time remain the merits
(exactness and super efficiency) of the DSM, this paper will introduce a newly developed method
called the spectral dynamic stiffness method (SDSM) [10–15] which accounts for both prismatic
and non-prismatic plate assemblies with any arbitrary classical [10–13] and non-classical [14, 15]
boundary conditions. The SDSM has been applied to modal analysis to give exact solutions within
low, medium and high frequency ranges with remarkable computational efficiency. For instance, the
SDSM exhibits two orders of magnitudes of improvement in computational efficiency over the con-
ventional FEM. This superiority is much more pronounced at higher frequencies. The elegance and
uncompromising accuracy of the SDSM provide a much wider appeal than the classical DSM.

2. Spectral dynamic stiffness formulation

The SDSM [10–15] combines the spectral (S) method and the classical dynamic stiffness method
(DSM). One of the key points in the SDSM lies in adopting two sets of modified Fourier series. The
adopted modified Fourier series for any arbitrary displacement or force boundary condition (denoted
by h(ξ)) along a plate edge (line node ξ ∈ [−L,L] in local coordinates of plate) is given by the
following two sets of modified Fourier series

h(ξ) =
∑
s∈N

l∈{0,1}

Hls
Tl(γlsξ)√
ζlsL

, Hls =

∫ L

−L
h(ξ)
Tl(γlsξ)√
ζlsL

dξ , (1a)

h(ξ) =
∑
s∈N

l∈{0,1}

Hls
T ∗l (γlsξ)√

ζlsL
, Hls =

∫ L

−L
h(ξ)
T ∗l (γlsξ)√

ζlsL
dξ , (1b)
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where N = {0, 1, 2, ...} is the non-negative integer set, and the subscript ‘l’, taking value of either ‘0’
or ‘1’, denotes the corresponding symmetric or antisymmetric functions (and coefficients). Here, ζls
is given as ζls = 2 when l = 0, s = 0 and otherwise ζls = 1. The corresponding modified Fourier
basis function Tl(γlsξ) and T ∗l (γlsξ) in Eq. (1) is defined as

Tl(γlsξ) =

{
cos( sπ

L
ξ) l = 0

sin
(
(s+ 1

2
) π
L
ξ
)

l = 1
, T ∗l (γlsξ) =

{
sin( sπ

L
ξ) l = 0

cos
(
(s+ 1

2
) π
L
ξ
)

l = 1
(2)

with ξ ∈ [−L,L] , s ∈ N. The above two sets of modified Fourier series provide complete and
orthogonal sets to described any one-dimensional function h(ξ) of Eq. (1). It should be emphasised
that the above modified Fourier series has strong orthogonality which is one of the most important
factors that makes the SDSM numerically stable with no precondition, therefore any higher order
of modified Fourier series can be adopted in the computation to compute results within any desired
accuracy.

By using the above modified Fourier series, the general solution of the governing differential
equation (GDE) for out-of-plane [10] and inplane [13] vibration of plate elements with arbitrary
boundary conditions in the frequency domain can be achieved. In the next step, the SDS matrix
for an element can be analytically formulated by substituting the above general solution into the
general boundary conditions (BC) by some algebraic manipulation. Indeed, the analytical expressions
involved in the SDSM are concise but can be used to handle complex structures with any arbitrary
boundary conditions [10–12].

Next, the analytically expressed spectral dynamic stiffness (SDS) matrix of elements can be as-
sembled directly to model complex structures. The assembly procedure is similar to that of the finite
element (FE) method with the exception that the FE elements are generally connected at point nodes
whereas the SDS elements are connected on line nodes. Here the line nodes represent either the plate
boundaries and/or the inter-element edges which have the flexibility to describe any arbitrary BC or
continuity conditions (either classical [10–13] or non-classical [14, 15]). In general, for an assembly
structure, the analytical SDSM formulation can be written in the following form

f = Kd , (3)

where K is the SDS matrix of the complete assembly structure, which relates the modified Fourier
coefficient vector of the force f to that of the displacement d on all of the line nodes (boundaries and
inter-element edges) of the assembly structure, so that

f =
[
fT1 ,f

T
2 , · · · ,fTi , · · · ,fTNtlDOF

]T
, d =

[
dT1 ,d

T
2 , · · · ,dTi , · · · ,dTNtlDOF

]T
. (4)

In Eq. (4), the subscript NtlDOF is the total number of line degrees of freedom (line DOF) of the plate
assembly (Theoretically, each line DOF has infinite DOF since each BC function is a continuous
function on ξ ∈ [−L,L]). Here, NtlDOF = ln×NlDOF where ln is the number of total line nodes of
the plate assembly whereasNlDOF represents the number of line DOF of each line node (for instance,
an individual rectangular Kirchhoff plate, being a special case of the assembly, has four edges, i.e.,
ln = 4 and each edge has two line DOF W and φ, i.e., NlDOF = 2). Each force f i and displacement
di sub-vectors in Eq. (4) take the following form

f i = [Fi00, Fi01, Fi02, · · · , Fi10, Fi11, Fi12, · · · ]T , (5a)

di = [Di00, Di01, Di02, · · · , Di10, Di11, Di12, · · · ]T , (5b)

where Fils and Dils (l ∈ {0, 1}, s ∈ N) are respectively the modified Fourier coefficients of the
corresponding force fi(ξ) and displacement di(ξ) BC (or CC) applied on the ith line DOF of the
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assembly, which are obtained by applying Eq. (1) onto fi(ξ) and di(ξ) respectively to give

Fils =

∫ L

−L
fi(ξ)

Tl(γlsξ)√
ζlsL

dξ , Dils =

∫ L

−L
di(ξ)

Tl(γlsξ)√
ζlsL

dξ , (6a)

or Fils =

∫ L

−L
fi(ξ)

T ∗l (γlsξ)√
ζlsL

dξ , Dils =

∫ L

−L
di(ξ)

T ∗l (γlsξ)√
ζlsL

dξ . (6b)

Therefore, each term of either Fils or Dils in Eq. (6) represents a frequency-wavenumber dependent
DOF (FWDOF) of the ith line DOF. In this way, the BC (or CC) can be arbitrarily prescribed along
any line DOF, which are directly transformed through Eq. (6) into vector form (i.e., f i and di) of Eq.
(5) and eventually into f and d in Eq. (4).

In essence, the elegance of the SDSM lies in representing a dynamical system very accurately
by using an extremely small number of DOF in an analytical and concise manner. This makes the
SDSM superior to other numerical or analytical methods in terms of both accuracy and computational
efficiency within low, medium and high frequency ranges. The merits of the SDSM are exploited by
the application of the well-known Wittrick-Williams (WW) algorithm [16] which is further enhanced
by some techniques as described in this section. Suppose that ω denotes the circular (or angular)
frequency of a vibrating structure, then according to the WW algorithm, as ω is increased from zero
to ω∗, the number of natural frequencies passed (J) is given by

J = J0 + s{Kf} , (7)

where s{Kf} corresponds to the negative inertia of the final SDS matrix Kf evaluated at ω = ω∗;
and J0 is given by

J0 =
∑
m

J0m , (8)

where J0m is the number of natural frequencies between ω = 0 and ω = ω∗ for an individual
component member when its boundaries are fully clamped. For more details, interested readers are
referred to [10, 12, 16]. A similar strategy described in [10] is also adopted here to provide an
efficient and reliable prediction for the above J0m which is based on the closed-form solution of each
members subject to full simple supports. Therefore, J0m of Eq. (8) can be obtained by applying the
WW algorithm in reverse to give

J0m = JSm − s(KSm) , (9)

where JSm is the overall mode count of a certain member with all boundaries subject to simple
supports, and s(KSm) is the sign count of its formulated SDS matrix KSm. First, the computation
of JSm in Eq. (9) is accomplished in an analytical manner by solving a number theory problem.
Next, the computation of s(KSm) in Eq. (9) is achieved in an elegant way by taking advantage of the
mixed-variable formulation, e.g., see Ref. The above two techniques of computing JSm and s(KSm)
resolves with conclusive certainty the problem of determining J0 in a highly efficient, accurate and
reliable manner.

The SDSM [10–15] has some important properties which can be summarised as follows:
• Exactness: The SDSM should be regarded as an exact series-based method which converges

to exact results with an exceptionally fast convergence rate [10, 11]. This is because the for-
mulation satisfies exactly the GDE of structure vibration and any arbitrary BC are satisfied in
an exact series sense. Moreover, unlike most other analytical methods, the SDSM is uncondi-
tionally numerically stable for any higher order series terms, allowing the method to compute
results within any desired accuracy.
• Efficiency: The SDSM is highly efficient mainly due to the fact that it uses a very small number

of DOF which, nevertheless, represent the structure most accurately. This is because the spectral
dynamic stiffness (SDS) matrix is formulated on the line nodes (similar to the boundary element
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method), and represents the system in a spectral sense. Moreover, the enhancements of the
Wittrick-Williams algorithm where the so-called Jm problem has been elegantly resolved to
allow modelling of complex structures with as few elements as possible.
• Robustness: The SDSM computes any required natural frequencies of complex structures cov-

ering from low to high frequency ranges. There is no possibility of missing any natural fre-
quencies and no spurious frequencies will be unnecessarily captured. This is also due to the
application of the enhanced Wittrick-Williams algorithm.
• Versatility: The SDSM can be assembled as easily as the finite element method. Clearly,

the SDSM can handle not only a single plate but also complex structures made of isotropic
as well as composite materials which can be subjected to any arbitrary boundary conditions
[10–12, 15], which also includes arbitrary non-uniform elastic supports, mass attachments and
coupling constraints [13, 14].

3. Results

Table 1: The results are presented for the frequency parameter λ = 4ωa2/π2
√
ρh/D using SDSM

for four cases from low (1-10th modes), and medium (20-100th modes) to high (200-1000th modes)
frequencies. The first three cases are for isotropic square plates with different BCs whereas the final
case is for a CSCC square isotropic plate with internal line support located at three-tenth ( x/(2a) =
0.3) of the edge.

Mode FFFF CCCC CSCS CSCC with internal line support
Methods SDSM SDSM DSCa SDSM Levyb DSCa SDSM DSC Ritz(trig.)
M,N 25+25 25+25 101×101 30+30 Exact 101×101 2(25+25) 101×101 50×50

1 0.00000 3.64606 3.6461 2.93333 2.9333 2.9333 4.90797 4.9080 4.9080
2 0.00000 7.43635 7.4364 5.54663 5.5466 5.5466 7.89990 7.8999 7.9000
3 0.00000 7.43635 7.4364 7.02430 7.0243 7.0243 12.1929 12.1929 12.1932
4 1.36461 10.9646 10.9647 9.58349 9.5835 9.5835 13.1294 13.1295 13.1297
5 1.98550 13.3319 13.3320 10.3567 10.3567 10.3567 15.1607 15.1608 15.1612
6 2.45909 13.3951 13.3952 13.0801 13.0801 13.0802 20.2351 20.2353 20.2360
7 3.52607 16.7180 16.7182 14.2057 14.2057 14.2057 20.4862 20.4863 20.4870
8 3.52607 16.7180 16.7182 15.6821 15.6821 15.6821 20.5496 20.5498 20.5509
9 6.19004 21.3303 21.3305 17.2597 17.2597 17.2597 23.2337 23.2340 23.2356

10 6.19004 21.3303 21.3305 20.2450 20.2450 20.2451 25.8856 25.8860 25.8879
20 15.4864 37.6251 37.6257 34.9090 34.9090 34.9093 41.3478 41.3481 41.3507
40 36.8797 68.6660 68.6682 64.5845 64.5845 64.5857 72.8807 72.8826 72.8925
60 56.8884 94.3824 94.3854 91.1837 91.1837 91.1863 105.022 105.027 105.050
80 81.1448 126.705 126.712 118.971 118.971 118.975 134.086 134.092 134.120

100 106.007 156.649 156.660 147.991 147.991 147.993 160.517 160.530 160.586
200 219.427 290.220 290.254 281.655 281.655 281.668 306.030 306.046 306.182
400 462.626 561.364 561.465 550.555 550.555 550.576 580.000 580.096 580.640
600 704.645 826.952 827.253 814.177 814.177 814.316 846.353 846.713 848.265
800 951.601 1092.55 1092.95 1074.18 1074.18 1074.41 1113.88 1114.19 1116.31
1000 1197.00 1349.29 1349.98 1333.87 1333.87 1334.31 1380.36 1381.06 1384.32

Time (s) 0.37 0.35 – 6.07 – – 12.0 – –

a Discrete Singular Convolution method [17]
b Levy solution (exact) [17]
c Discrete Singular Convolution method [18]
d Trigonometric Ritz method [19]

The SDSM provides exact solutions with an extremely fast computation speed. This is a tremen-
dous advantage which applies to individual composite plates (e.g., FFFF, CCCC, CSCS cases in Ta-
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ble 1) as well as composite plate assemblies (CSCC with internal support). (The notation comprising
four letters successively represent the right, up, left and bottom edges respectively in an anticlockwise
sense.) Table 1 shows the results for four different cases with the first three cases modelled by one
SDS element whereas the fourth one modelled by two SDS elements. All SDSM results are presented
with accuracy up to six significant figures. The number of terms used in the series expansion (M and
N ) are indicated in the table. Also, the total computation time taken by the SDSM for each case is
recorded in the last column of Table 1. The results computed by the current method are compared with
those obtained by other methods including the discrete singular convolution (DSC) method [17, 18],
exact Levy solution [17] and Trigonometric Ritz method [19]. It is evident from Table 1 that the
SDSM behaves extraordinarily well in terms of accuracy and computational efficiency not only for
the low frequency range, but also for the medium to high frequency ranges. With no more than 30
terms taken in the series solution, all of the 20 natural frequencies covering low to high frequency
ranges have six significant digit accuracy for all of the four cases. It can be seen that all SDSM results
for the CSCS case coincide with exact Levy solutions [17] as expected. Furthermore, those 20 highly
accurate results for each case were obtained within 12 seconds in total. In particular, each of the FFFF
and CCCC cases took less than 0.4 second which is indeed, a remarkable computational efficiency.

Similarly, Table 2 shows the inplane free vibration analysis results computed by the SDSM with
remarkable accuracy and computational efficiency. The SDSM is used to predict the medium (10th-
100th) and high (200th-1000th) natural frequencies for four cases. When using the SDSM, only one
SDS element is used in the modelling with both M and N adopted as 20, and all SDSM results are
given with accuracy of six significant figures. The results computed by SDSM are compared with FE
solutions computed by ANSYS (FEM2, using a 300×300 mesh of Plane 182 elements) with only three
significant figures for the 10th-100th modes (results with two significant figures are computed when a
coarser mesh FEM1 100×100 is used). Higher natural modes are not computed by the FEM since the
solvers provided in the FEM becomes highly inefficient and unreliable for higher modes. The final

Table 2: Dimensionless natural frequency parameters λ = 2ωa/π
√
ρ/G for inplane free vibration

plates. The SDSM is applied to compute 11 natural frequencies of the four cases covering medium
(10th-100th) to higher (200th-1000th) modes. Side by side are the finite element solutions obtained
by ANSYS using a very fine mesh (FEM2, 300×300) of Plane 182 elements (a coarser mesh 100×100
FEM1 is also adopted for the S2S1S2S1 case only). Only medium (10th-100th) modes are given for
the FE solutions. The final matrix size and the total computational time of both the SDSM and FEM
are given in the last two rows.

Mode
CCCC S2S1S2S1 CCCS2 CCS2S2

SDSM FEM2 SDSM FEM1 FEM2 SDSM FEM2 SDSM FEM2

10 3.82718 3.82859 3 3.00111 3.00009 3.72833 3.72845 3.56133 3.56150
20 5.17103 5.17542 4.12311 4.12595 4.12342 5.07830 5.07865 4.93554 4.93602
40 6.91510 6.92134 6.08276 6.09196 6.08379 6.80026 6.80100 6.59543 6.59643
60 8.38312 8.38503 7.28011 7.29566 7.28172 8.22259 8.22479 8.01245 8.01452
80 9.36414 9.36610 8.60233 8.62697 8.60544 9.31753 9.31987 9.22457 9.22677
100 10.5505 10.5549 9.84886 9.86266 9.85316 10.3622 10.3655 10.1912 10.1933
200 14.5867 – 13.6277 – – 14.4709 – 14.2358 –
400 20.2866 – 19.2725 – – 20.1682 – 20.0177 –
600 24.5966 – 23.7697 – – 24.4609 – 24.3223 –
800 28.2882 – 27.4591 – – 28.1562 – 27.9424 –

1000 31.5344 – 30.6128 – – 31.3854 – 31.2660 –
Sign. Fig. 6 3 6 2 3 6 3 6 3

Matrix Size 39 1.80E+05 158 2.00E+04 1.80E+05 39 1.80E+05 78 1.80E+05
Time (s) 0.25 24.6 1.25 5.00 23.5 1.06 27.5 1.11 23.0

matrix size and total computational time for both methods are also given in the last two rows of Table
2. To solve the tabulated 11 modes with six significant figures covering medium to high frequency
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ranges, the SDSM took only 0.25-1.25 s; whereas the well-developed FEM package ANSYS took
23-28 s but compute only the first six medium modes with three significant figures. It is apparent that
SDSM is far more superior to the FEM in free vibration analysis within medium to high frequency
ranges. The major advantage of the current SDSM lies in the fact that the SDS formulation satisfies
the GDE exactly and uses extremely low number of DOF to represent the system most accurately. For
the four case studies shown in Table 2, the final matrix size of the SDSM was only 39-158, which is
in a sharp contrast to the FEM using as many as 1.80E05 DOF. This great advantage establishes the
SDSM as an ideal tool for parametric and optimisation studies, not only within low frequency range
but also within medium to high frequency ranges.

Apart from the excellent computational efficiency and accuracy, the SDSM is superior to other
analytical (or semi-analytical) methods due to its versatility. Associated theories have been developed
to model arbitrarily non-uniform elastic supports, mass attachments and elastic coupling constraints,
which has further broadened the application scope of the SDSM. In [14], the modal analysis of a
Goland wing model has been performed by using the SDSM. In this model (see Fig. 1), the presence
of stores, engines as well as flap affects the dynamic properties of the aircraft significantly and there-
fore, influences the aeroelastic stability as well as the maneuverability of the aircraft in operation.
The present research proposes a novel analytical method for modal analysis of composite rectangular
wing with uniform or non-uniform attachments like engine as well as elastically coupled flap in an
efficient and elegant way.
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Figure 1: A composite Goland wing with rotationally coupled flap as well as engine, missile and store
attachments.

4. Conclusions

A recently developed Spectral Dynamic Stiffness Method (SDSM) has been presented in this
paper. The methodology and advantages are detailed which is followed by numerical results and
applications. It is demonstrated that the SDSM provides exact solutions with remarkable efficiency.
Moreover, the method is versatile for structures with arbitrary boundary conditions and with complex
geometries, which has open novel possibilities in structural dynamic analysis.
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