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As one of the most important structures, conical shells are widely used in various occasions, such 
as aerospace engines and ocean engineering. In this paper, a simulation model of conical shell 
made of the functionally gradient material is established to study the Influence of boundary re-
straint on its characteristics. Spring stiffness can be adjusted to simulate various boundary condi-
tions. The vibrating displacement fields are constructed as the Fourier series with supplementary 
functions with the consideration of boundary equilibrium requirement. All the unknown can be 
solved from a standard eigenvalue problem, which is obtained from energy formulation in con-
junction with Rayleigh-Ritz method. Several numerical results are then presented to show the 
correctness and efficiency of the current model. The influence of boundary restraining stiffness, 
parameters of functionally gradient materials on the modal characteristic are then discussed in 
detail. Finally, some concluding remarks are made. 
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1. Introduction 

The conical shells have been widely used in various engineering fields and intensively in aerospace 
structures, for example, the noses of supersonic aircraft and missiles. FGMs now have been consid-
ered as one of the most promising candidates for future smart composites in numerous engineering 
fields. FGM conical shells are made from a mixture of ceramics and metals and are more character-
ized by a continuous and smooth change of the mechanical properties from one surface to another. In 
the service life, the FGM conical shells are often subjected to dynamic loadings. Therefore, the free 
vibration characteristic of the FGM conical shells must be studied for safety and stability reasons. 

The development of conical shell structures have been considerable and well established. Niordson 
[1] used energy method to solve conical shells bucking problem. Mustari and Sachenkov [2] derived 
the single Galerkin method to analyse the vibration and the stability of structure shells under various 
boundary conditions. Singer [3]-[4] studied the bucking problem of conical shells and cylinder shells 
under different boundary conditions. Daninel [5] gave the vibration characteristic of conical shells 
with a clamped end a free end by Rayleigh-Ritz method. Li and Lam [6]-[7] has done a lot of research 
about the static and dynamic characteristics of conical shells and did some analyses of free vibration 
characteristics of conical shell and the influence of boundary conditions and various parameters on 
the free vibration frequency. 

In this paper, an FGM conical shell was treated as the research object and the characteristic equa-
tion of the system was derived by using Rayleigh-Ritz method based on the expressions of kinetic 
and potential energy. The vibrating displacement fields are constructed as the Fourier series with 
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supplementary functions with the consideration of boundary equilibrium requirement. Then charac-
teristic equations in different boundary conditions were solved by using MATLAB programming 
language. Then eigenvalues were gotten respectively and some comparisons were done with refer-
ences. Two frequencies matched well, so the method used in this paper verified right. At last, the 
influence of boundary restraining stiffness, parameters of functionally gradient materials on the modal 
characteristic are then discussed in detail. Finally, some concluding remarks are made. 

2. Theoretical formulations 
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Fig.1: Modeling of the shell and its boundary conditions 

Figure 1 shows the elastic restraints along the left end of a FGM conical shell of small end radius 
R1, big end radius R2, thickness H and length L. The variables k1, k2, k3 denote the stiffnesses for the 
linear springs, and k4 is the stiffness for the rotational spring. Similarly, a set of springs (k5, k6, k7 and 
k8) can also be applied to the right end. All the classical homogeneous boundary conditions can be 
considered as the special cases when the stiffness for each of these springs is either extremely large 
or sufficiently small. 

Functionally graded materials are composed of two constituent materials, the variations through 
the thickness of Young’s modulus E, Poisson ratio μ and the mass density per unit volume ρ can be 
written as [8]: 
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where z is the thickness coordinate (െܪ 2 ൑ ݖ ൑ ܪ 2⁄⁄ ), and	ܰ	is the gradient index. Subscripts i and 
o refer to the metal and ceramic constituents, respectively. When the value	ܰ ൌ 0, a fully ceramic 
shell is intended and infiniteܰ, a fully metallic shell. When the gradient index is increased, the content 
of metal in the FGM layers decreased. 

The vibrating displacement fields constructed as the Fourier series with supplementary functions 
are shown as: 
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Based on the Donnell-Mushtari theory, the surface strains and curvatures are defined as: 
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The energy expressions of conical shell include the kinetic energy expressions and the potential 
energy expressions: 
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Then do derivation, transformation, substitution to the energy equations by the Rayleigh-Ritz 
method based on Hamilton equation: 
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  By substituting Eqs. (1) - (7) into Eq. (8), the final system equations about the Fourier coefficients 

can be obtained as 
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3. Numerical results and discussion 

According to the system characteristic equation, the eigenvalue (ω) for different boundary condi-
tions can be solved by MATLAB programs. The variation through the thickness of Young’s modulus 
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E and mass density per unit volume ρ are the same as Eq. (1). The structural parameters are H=0.004m, 
R2=0.4m, Lsinα/R2=0.25, Eo =380Gpa, ρo=3800݇݃ ݉ଷ⁄ , μo=0.3, and Ei=70Gpa, ρi=2710݇݃ ݉ଷ⁄ , 
μi=0.3。 

3.1 Classical boundary conditions 
Here some natural frequencies with different gradient index will be presented, and be compared 

with frequencies from reference [9]. 

Table 1 Comparisons of natural frequency f for the conical shell with S-S boundaries ( 1 0m ,N  ) 

  n present reference Error (%) 

30o  

1 3882.17 3874  0.2105  
2 3499.85  3516  0.4614  
3 3056.46 3093  1.1954  
4 2667.45 2677  0.3580  
5 2342.08 2331 0.4753 
6 2073.56 2088 0.6916 

45o   

1 3393.39  3316  2.0549  
2 3223.41 3187  0.4322 
3 3006.47  3007 0.8988 
4 2797.40  2814  0.9072 
5 2640.38 2642 0.0613 
6 2529.75 2523 0.2675 

60o  

1 2688.63 2679 0.3595 
2 2665.32 2645 0.7682 
3 2630.23 2601 1.1237 
4 2522.85 2563 1.5665 
5 2530.96 2549 0.7077 
6 2557.21 2574 0.6523 

In table 1, the natural frequencies getting from the present method have been compared with the 
ones from the reference [9] in the same boundary conditions, and the error is showed clearly. From 
the errors, it is easy to find that the maximum error is 2.0549%. Most of the errors are about 0.1%--
2%, so the present method can be verified to be right in classical boundary conditions. The table 1 
also shows the variations of the natural frequencies (Hz) with the circumferential wave numbers n 
and semi-vertex cone angle for FGM conical shell. 

 

Fig. 1: Natural frequencies associated with various gradient index for the case of semi-vertex cone angle  
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Fig. 2: Natural frequencies associated with various gradient index for the case of semi-vertex cone angle  

α = 45º, m = 1 

 
Fig. 3: Natural frequencies associated with various gradient index for the case of semi-vertex cone angle 

α= 60º, m = 1 
Fig. 1- Fig. 3 show the variations of natural frequencies (Hz) with the circumferential wave num-

bers n for FGM conical shell. The curve N=0, N=infinity show the natural frequencies for a ceramic 
conical shell and a metal conical shell, respectively. The effects of changing gradient index (N) can 
be seen from figures. As N increased, the natural frequencies decreased. When N is small, the natural 
frequencies approached those of Ceramic and when N is large they approached those of Metal. Hence, 
the natural frequencies for N>0 fell between those of Ceramic and Metal for a given circumferential 
wave number n. 

3.2 Other boundary conditions  
In order to find out the relationships between the spring stiffnesses and the frequency, at both two 

ends of the shell, the elastic supports are set to be only one spring, and the non-dimensional spring 
stiffness changes from 10-4 to 104. In each case, five frequencies are recorded and then show them in 
tables as follows: 

Table 2 Impact on the natural frequencies of the spring stiffness of 1
'k   

N   1
'k  1n    2n   3n   4n   5n   

0.5 

410   3280.256 2506.727 1895.963 1478.247 1224.229 
210   3280.352 2506.869 1896.156 1478.467 1224.440 
010   3288.300 2518.835 1912.557 1497.353 1242.730 
210   3326.236 2579.497 2000.768 1606.080 1357.515 
410   3328.507 2583.328 2006.639 1613.773 1366.303 
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2 

410   2743.946 2097.306 1586.201 1235.940 1021.386 
210   2744.031 2097.425 1586.360 1236.119 1021.555 
010   2751.112 2107.430 1599.844 1251.495 1036.321 
210   2783.708 2157.322 1672.095 1340.468 1130.044 
410   2785.598 2160.427 1676.889 1346.796 1137.302 

Table 3 Impact on the natural frequencies of the spring stiffness of 2
'k  

N   2
'k  1n    2n   3n   4n   5n   

0.5 410   3280.268 2506.751 1895.991 1478.277 1224.259 
210   3281.497 2509.232 1898.966 1481.442 1227.365 
010  3368.343 2697.700 2128.285 1724.577 1465.205 
210   3546.680 3207.822 2804.373 2444.435 2167.509 
410   3551.339 3223.216 2826.208 2467.653 2189.986 

2 410   2743.955 2097.326 1586.225 1235.966 1021.412 
210   2744.984 2099.429 1588.774 1238.718 1024.164 
010   2817.477 2258.775 1784.580 1448.930 1233.068 
210   2964.239 2683.360 2349.183 2051.510 1822.564 
410   2968.017 2695.877 2366.869 2070.166 1840.434 

Table 4 Impact on the natural frequencies of the spring stiffness of 3
'k  

N   3
'k  1n    2n   3n   4n   5n   

0.5 

410   3280.348 2507.039 1896.502 1497.059 1225.314 
210   3287.807 2534.442 1944.586 1551.196 1320.521 
010  3317.244 2708.989 2290.788 2053.176 1922.278 
210   3318.685 2721.242 2316.978 2088.437 1959.168 
410   3318.699 2721.371 2317.253 2088.805 1959.549 

2 

410   2744.021 2097.567 1586.651 1236.616 1022.288 
210   2750.108 2120.533 1626.989 1297.058 1101.979 
010  2774.262 2271.662 1931.383 1739.625 1631.391 
210   2775.451 2282.537 1955.186 1771.670 1664.577 
410   2775.463 2282.651 1955.437 1772.004 1664.918 

Table 5 Impact on the natural frequencies of the spring stiffness of 4
'k  

N   4
'k  1n    2n   3n   4n   5n   

0.5 

410   3282.631 2506.733 1896.562 1480.841 1229.890 
210   3283.449 2506.736 1896.950 1482.990 1235.597 
010  3283.460 2506.736 1896.957 1483.030 1235.713 
210   3283.461 2506.736 1896.957 1483.030 1235.714 
410   3283.461 2506.736 1896.957 1483.030 1235.714 

2 

410   2746.081 2097.321 1586.626 1237.908 1025.679 
210   2746.847 2097.330 1586.988 1240.152 1031.769 
010  2746.858 2097.330 1586.944 1240.201 1031.918 
210   2746.858 2097.330 1586.944 1240.201 1031.920 
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410   2746.858 2097.330 1586.944 1240.201 1031.920 

Table 6 Impact on the natural frequencies of the spring stiffness of 5
'k  

N   5
'k  1n    2n   3n   4n   5n   

0.5 

410   2528.631 1802.760 1325.103 1024.706 848.928 
210   2529.064 1803.096 1325.399 1024.979 849.167 
010  2563.995 1830.475 1349.819 1047.679 869.302 
210   2702.288 1946.184 1458.116 1154.584 972.111 
410   2709.273 1952.420 1464.208 1160.926 978.664 

2 

410   2117.170 1510.222 1111.153 859.226 710.302 
210   2117.514 1510.489 1111.386 859.439 710.487 
010  2145.039 1532.108 1130.543 877.164 726.058 
210   2249.864 1621.648 1214.489 960.117 805.373 
410   2254.980 162. 1219.163 965.012 810.418 

Table 7 Impact on the natural frequencies of the spring stiffness of 6
'k  

N   
6
'k  1n    2n   3n   4n   5n   

0.5 

410   2528.670 1802.817 1325.160 1024.761 848.979 
210   2533.005 1808.726 1331.098 1030.453 854.249 
010  2780.807 2199.848 1740.362 1424.594 1219.522 
210   3086.571 2982.473 2744.235 2452.790 2198.990 
410   3092.956 3006.318 2778.788 2487.712 2231.927 

2 

410   2117.204 1510.270 1111.202 859.273 710.347 
210   2120.847 1515.264 1116.263 864.182 714.956 
010   2329.234 1845.576 1464.442 1202.763 1032.154 
210   2586.860 2505.905 2316.090 2081.751 1871.918 
410   2592.248 2526.009 2345.439 2111.661 1899.849 

Table 8 Impact on the natural frequencies of the spring stiffness of 7
'k  

N   
7
'k  1n    2n   3n   4n   5n   

0.5 

410   2529.319 1803.601 1326.292 1026.341 851.010 
210   2585.933 1875.652 1428.140 1163.832 1021.603 
010  2791.855 2240.190 1969.752 1857.096 1814.123 
210   2799.770 2260.212 1999.955 1893.844 1852.496 
410   2799.851 2260.413 2000.267 1894.221 1852.887 

2 

410   2117.750 1510.933 1112.155 860.590 712.022 
210   2165.534 1572.205 1198.749 976.625 854.691 
010  2339.949 1895.120 1691.910 1614.000 1579.423 
210   2346.660 1912.811 1720.872 1650.007 1616.718 
410   2346.728 1912.994 1721.171 1650.378 1617.098 

Table 9 Impact on the natural frequencies of the spring stiffness of 8
'k  

N   8
'k  1n    2n   3n   4n   5n   

0.5 410   2533.828 1807.590 1333.306 1038.728 869.852 
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210   2535.327 1809.336 1336.791 1045.670 881.893 
010  2535.346 1809.360 1336.841 1045.774 882.084 
210   2535.346 1809.360 1336.841 1045.775 882.086 
410   2535.346 1809.360 1336.841 1045.775 882.086 

2 

410   2121.823 1514.968 1119.235 872.050 727.648 
210   2123.164 1516.807 1123.237 880.060 741.087 
010  2123.181 1516.833 1123.297 880.191 741.328 
210   2123.182 1516.833 1123.298 880.192 741.330 
410   2123.182 1516.833 1123.298 880.192 741.330 

From Table 2 –Table 9,it could be found that no matter which spring is set at both two ends, the 
natural frequency increases with the increasing of the spring stiffness firstly, then reach to a stable 
value. So the effect of spring stiffness on natural frequency is smaller and smaller when the spring 
stiffness continue increasing. And with the increasing of the spring stiffness, the natural frequency of 
the gradient index 0.5 increases more quickly than that of the gradient index 2. 

4. Conclusion 

A study on the vibration of FGM conical shells has been presented. The analysis was done by 
Rayleigh-Ritz method and the MATLAB programming language was used to solve the frequency 
equations in different boundary conditions. For validation, the results are compared with those in the 
literature and have found to be accurate. So the method used in this paper was proved to be right. And 
the influence of the gradient index (N) on the frequencies for FGM conical shells has been found, the 
natural frequencies increases when N increases. Next the natural frequencies were shown in tables, 
from which the effects of different elastic supports on frequencies were analyzed. The natural fre-
quency increases with the increasing of the spring stiffness firstly, then reach to a stable value. 
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