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Based on the Hermite collocation method, radial point interpolation meshless method (RPIM) is 

employed in this paper to study the acoustic problems in frequency domain. From the perspec-

tive of stability and error analysis, the reliability and availability of RPIM is investigated to deal 

with Neumann boundary conditions by adopting multiquadrics Function, Gaussian function and 

thin plate spline. The scheme of distributing irregular points in the computational domain is 

proposed to verify the adaptive ability of RPIM based on the Hermite collocation method in 

solving acoustic problems. The current method is validated through handling with several 

acoustic problems. 
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1. Introduction 

In recent decades, meshless methods are involved in various problems in physics as well as en-

gineering field. Meshless methods can be traced back to the smoothed particle hydrodynamics 

method by Lucy and Gingold in 1977[1, 2]. The basic idea of meshless method is distributing nodes 

in computational domain and adopting shape function of nodes to approximately represent physical 

quantity in computational field. Meshless methods not only possess superiority in reliability over 

traditional mesh method, such as FEM and FVM, but also require simpler pre-treatment, high accu-

racy and decent computational efficiency. Radial point interpolation method (RPIM) was proposed 

by Liu [3] and applied to study free vibration problems of 2-D solids. Furthermore, the Hermite-

type interpolation is adopted in RPICM to improve the accuracy for solving nonlinear Poisson 

equation with Neumann boundary conditions [4]. Recently, ArmanShojaei[5] proposed infinite 

clouds for the analysis of acoustic problems defined on unbounded domains. In this paper, the glob-

ally supported RBF collocation method is introduced to solve 1D and 2D Helmholtz equation with 

Neumann boundary condition and some examples is proposed to verify its higher accuracy and eas-

ier implementation.  

2. Hermite radial point interpolation method 

The approximation of a function ( )u x  can be written as a linear combination of radial basis 

functions around x and its normal derivatives on boundaries at the n  nodes within its support do-

main, then bn  nodes on boundaries. 
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0 0 0( , , )x y z  is the central point. And ( )iR r are the 

strictly positive definite radial basis functions (RBF) with coefficients 
ia  , 

jb are the coefficients of 

the normal derivative of radial basis ( )iR r  at the points on boundaries. 
kc  are the coefficients of the 

additional polynomial ( )kP x  .The coefficients 
ia  ,

jb  and 
kc are determined by ensuring that the 

interpolation passes through all the 
bn n nodes within the support domain: 
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where 
x

jl and 
y

jl  are the elements of normal vector at the j
th

 point on boundaries. 

Polynomial basis has the following monomial terms: 

 2 2[1, , , , , , ]x y x xy yT
P (x)  (3) 

The interpolations of the normal derivatives of function at the j
th

 point on the boundaries have 

the following form: 

  
1 1 1

( ) ( )( )
( ) , 1,2, ,

b
b bnn m

j ji
i j k k b

i j k

u x R rR r
a b c P x j n

n n n n n  

   
          
    (4) 

What’s more, the additional polynomial terms have to satisfy an extra requirement of unique ap-

proximation. Furthermore, in order to guarantee the system matrix symmetric, the following con-

straints are generally imposed: 
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The matrix form of these equations can be expressed as: 
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where the vector of function values SU  is 
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Thus, the unknown coefficients vector is found to be 

 1

sA G U  (8) 

The form of the approximation function can be obtained as 
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The vector of shape function in Eq. (9) can be expressed as follow: 
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In Eq. (10), n  can be expressed as 
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where ,i kG  is the ( , )i k  element of matrix 1G . 

Three particular forms of radial basis functions are usually introduced: Multiquadrics Function, 

Gaussian Function and Thin Plate Spline type. Proposed by Hardy [6] and then developed by other  

researcher [7,8], Multiquadrics Function (also called MQ) has following expression: 

 2 2( , ) ( ) , 0q

i iR x y r R R    (12) 

where q  and R  are shape parameters. 

Gaussian Function (also abbreviated as EXP) has the following form: 

 2( , ) exp( ( ) )i
i

c

r
R x y

d
   (13) 

where ( 0)    is a shape parameter and 
cd  is the average distance of neighborhood nodes in the 

influence domain. 

Thin Plate Spline function (also abbreviated as TPS) has following formula: 

 ( , )i iR x y r


  (14) 

where  is a shape parameter. 

With detailed modification for shape parameters and influence domain, it is convenient to devel-

op the Radial basis function to multidimensions. A simulation is performed to reveal the property of 

RBFs shape function over the support domain [ 1, 0.5,0,0.5,1]ix     with uniform nodes arrange-

ment. 

 
 

 

 

 
Figure 3: The shape function of polynomial terms at the node: 0x   
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Figure 1: The shape functions of 

different RBFs at the node  

 

Figure 2: The derivatives of shape 

functions at the node:  
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As observed in Figs. 1-3, these results inherently indicate that the shape functions of Hermite ra-

dial point interpolation method with polynomial terms possess linearly consistency and the delta 

function property, which facilitate convenient implementation of essential boundary conditions. 

3. Approximation method 

The governing equation and boundary equation of numerous physical can be described as follow 

 
    

    

L u x f x x

B u x g x x

  


 

 (15) 

where   and   denote the interior computational domain and the boundary domain, respectively. 

Moreover, L  and B  represent the differential operators of the governing equation and boundary 

equations, respectively. What’s more,  f x and  g x denote the defined conditions of governing 

equation and boundary equation. 

Generally, the boundary conditions can be expressed as 

     
 u x

B u x u x
n

 


 


 (16) 

where n  denotes the outward unit vector normal to the boundary ,
T

x yn n n .If 0  , Eq.(16) 

represents Dirichlet boundary condition; if 0, 0   . Eq.(16) yields Neumann boundary condi-

tion. Otherwise, namely 0, 0   , Eq.(16) is known as Robin boundary condition.  

4. Numerical examples  

In this section, two examples are provided to show the convergence and stability of RPIM ap-

plied in acoustic problems. Example 1 is a case for 1D problem, and then in example 2, the current 

method is extended to a 2D problem. 

Before the detailed description of the examples, the governing equation and criteria are given as 

follow. 

If the fluid in the domain is assumed to be stationary and inviscid, then the problem of acoustic 

wave propagation in frequency domain can be expressed as Helmholtz equation: 

 2 2( ) 0, .k p     (17) 

In the above equation, /k c  is known as the wave number, while   and c denote the angular 

frequency and the wave speed, respectively. Besides, 2  is the Laplace operator and   is the com-

putational domain. 

In case that the exact/analytical solution exists, the convergence rate of the method can be evalu-

ated. The error norm, as an indicator of convergence, is defined as: 
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where exact

ip  is the analytical solution while num

ip  represents the numerical solution at the  i
th

 point. 

Furthermore, to evaluate the stability of the current approach, the evaluation index can be de-

fined as: 

 log10( ( ))cond G   (19) 

where G  is the matrix of shape function. 
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4.1 Example 1 

In this example a 1D model is considered to prove the reliability of presented approach and the 

effect for the number of distributed nodes. In 1D problem, the Eq. (17)  and boundary condition can 

be simplified as: 
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x
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 (20) 

In this subsection, Dirichlet boundary condition and Neumann boundary condition are adopted as 

an example. Moreover, the wave number is defined as 10k   and the shape parameters are suitably 

selected according to some numerical experiments. 

The results of this example provide comparison of capability and stability for Multiquadrics 

Function, Gaussian Function and Thin Plate Spline, as shown in Fig.4 and 5. 

 

 
Figure 4: Numerical error of different RBFs  

along with the number of distributed nodes 

These results indicate that the numerical error declines with the increase of the number of dis-

tributed nodes. While denser collocation nodes brings larger condition number. Furthermore, from 

the perspective of errors and stability, Multiquadrics Function and Gaussian Function basis is more 

suitable to solve Helmholtz equation compared with Thin Plate Spline. However, the stability of 

Thin Plate Spline function is not so sensitive to the increase of distributed nodes. 

What’s more, irregular nodes are also adopted in the computational domain to study the adaptive 

ability of RPIM based on the Hermite collocation method. The comparison shows that the results of 

the approximated simulation match well with those of the analytical prediction (see Fig. 6). 

 
Figure 6: Validation of Hermite radial point interpolation method with 18 irregular nodes 
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4.2 Example 2 

In this example the performance of the method in solving a 2D acoustic problem is investigated. 

The following set of parameter is used in this subsection： 

500frequency  Hz , 1.225  kg/m
3 

and 340c  m/s 

The 2D problem is described as 

 

2 2
2

2 2

0 1

0 1

0, [0,1], [0,1]

1

1

x x

y y

d p d p
k p x y

dx dy

p p

p p

 

 

    

 

 

 (21) 

For the numerical calculation, a set of regular distributed nodes is used to discretize the computa-

tional domain (as shown in Fig.7) and the problem in Eq. (21) is solved by RPIM (as shown in 

Fig.8). Both RPIM and FEM are used to solve the above problem, and the results are given in Figs. 

8 for comparison. As the reference solution, FEM model is built and solved in COMSOL with 

12765 triangular elements 

 
Figure 7: 36 regular nodes in the computational domain 

 

    Acoustic pressure (Pa)                                                           Acoustic pressure (Pa) 

 
(a)                                                                      (b) 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X-Axis

Y
-A

x
is



ICSV24, London, 23-27July 2017 
 

 

ICSV24, London,23-27July 2017  7 

 
(c) 

Figure 8: Comparison of the acoustic pressure field obtained by (a) the present method, and (b) the FEM 

in example 2; (c) is extracted at 0.5y   for comparison.  

Fig. 8 inherently indicates that the two sets of results are in good agreement, which clearly 

demonstrates the validation of the present method in solving acoustic problems. And compared with 

the FEM, RPIM based on the Hermite collocation method can provide acceptable solutions with 

less distributed nodes. Thus this method has the potential to improve the computational efficiency.  

5. Conclusions 

Hermite radial point interpolation method with polynomials is applied to give the numerical so-

lution of Helmholtz equation. Two numerical examples are presented to verify the validation of the 

current approach in solving acoustic problems. In the terms of errors and stability, Gaussian Func-

tion basis is more suitable to solve Helmholtz equation compared with Multiquadrics Function and 

Thin Plate Spline. The fact that irregular node distributions produce rather satisfactory numerical 

results demonstrates the good adaptive ability of RPIM based on the Hermite collocation method in 

solving acoustic problems. 
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