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In this paper, the property of multiple vibration band gaps in locally resonant beam carrying 

beam type resonators is investigated. Small sized beams are attached to one host beam to 

combine into a locally resonant beam containing cantilever beam type resonators. Numerical 

and experimental analyses show that this type of locally resonant beam can generate a plurality 

of locally resonant band gaps. Equivalent multiple resonators model of the cantilever beam type 

resonator is established according to modal superposition theory. Each mode of the cantilever 

beam type resonator is equivalent to a single degree of freedom spring-mass oscillator system 

while effective modal mass and effective modal stiffness of each mode are as the lumped mass 

and stiffness of the oscillator system respectively. Equivalent multiple resonators model is 

verified by dynamic stiffness and dispersion relation results. The multi-band gaps induced by 

cantilever beam type resonator are verified theoretically and experimentally. The band structure 

of the locally resonant beam containing equivalent multiple resonators model is consistent with 

the one of the locally resonant beam containing cantilever beam type resonators model 

indicating the high accuracy of equivalent method. Experimental work also verified that locally 

resonant band gap could be broadened effectively after laying damping layer on the cantilever 

beam type resonator while greater damping can be achieved at higher order modes. 

Keywords: locally resonant beam, beam type resonator, multi-band gaps, equivalent multiple   

resonators model, effective modal mass 

 

1. Introduction 

The phononic crystals (PCs) had been proposed 30 years ago, elastic wave band gap is one of the 

most important properties [1,2]. According to the locally resonant band gap mechanism [3], the 

small sized PCs structure can also generate low frequency band gap. So locally resonant PCs 

(LRPCs) has a broad application prospects of vibration reduction. 

Researchers usually embed metal balls coated with rubber layers into the base material or attach 

resonators onto the beams and plates to form the PCs [4,5]. These LRPCs have less band gaps 

because resonators in these models have less resonant modes. However, the locally resonant band 

gaps are dependent on these modes [6]. Researchers usually wish to obtain broad band or multiple 

band vibration reduction using multiple vibration absorbers such as distributed dynamic vibration 

absorbers [7-10].  

Beam type vibration absorbers have broadband vibration suppression property because the beam 

has rich modes. M. Cavacece et al. [11] applied the beam type dynamic vibration absorber to SDOF 

vibration system, then optimized the beam parameters. Brenan et al. [12] proposed equivalent mass 

of the cantilever beam type vibration absorber which only involves the first mode. Xiao Yong et al. 

took the cantilever beam as SDOF resonator in the LRPCs structure and determined the equivalent 

mass of the cantilever beam type resonator(CB resonator) [13]. 
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In the previous study, only the first mode of the CB resonator is focused. However, the high    

order modes can also result in obvious band gaps. Slight changes in mass of the resonators may lead 

to obvious alternating in bandwidth, one should determine the mass of the CB resonator in order to 

tune the band gap. In this paper, equivalent multiple resonators (M-SDOF resonator) model of CB 

resonator involving multiple modes is proposed and the equivalent mass which has great influence 

on bandwidth is identified. Multi-band gap induced by the CB resonator of the LR beam is clarified 

by theoretical and experimental analysis. 

2. Equivalent model of CB resonator 

2.1 Equivalent M-SDOF model of the CB resonator 

Cantilever beams are periodically attached to a main beam to form a simple Euler LR beam. The 

cross section of the LR beam is rectangular, width and height are set to b, h, lattice constant is a, as 

shown in Fig. 1. Take the central axis of the no deformed LR beam as the x-axis. There is only 

flexural vibration in the LR beam and CB resonator in y direction. 

  

Figure 1: LR beam containing CB resonator. 

Figure 2. is a schematic of CB resonator and equivalent spring-mass oscillator model. CB reso-

nator is usually used in pairs as shown in the Fig. 2(a), the length of the CB resonator is set to𝑙, the 

cross section is rectangular with the width and height are set to br , hr respectively, the length of the     

cantilevered portion is 𝑙r while the length of the connecting portion in the root of the CB resonator 

is 𝑙s = 2(𝑙 − 𝑙r). 

     

Figure 2:  (a) Schematic of CB resonator connected with host structure; (b) Equivalent single resonator 

model; (c) Equivalent M-SDOF resonator model. 

Currently, the CB resonator is equivalent to a SDOF resonator as shown in the Fig. 2(b) with the 

equivalent lump mass 𝑚𝑟=0.605𝜌rAr, where 𝜌r, Ar is density and cross-sectional area of the CB 

resonator respectively, the rest mass of the cantilevered portion constitute 𝑚0 with 𝑚𝑠 , where 

𝑚𝑠=𝜌rAr𝑙s. 

Considering multiple modes, CB resonator should be equivalent to M-SDOF resonator model 

shown in Fig. 2 (c). The key point of the equivalent process is to determine the equivalent mass 𝑚r𝑖 

and equivalent stiffness 𝑘r𝑖 of each mode. Effective mode mass of the CB resonator is appropriate 

to be as the lump masses of the equivalent M-SDOF resonator. Effective mode mass is a coefficient 

which is usually used in vibration response calculation by modal superposition method [14].  

For a MDOF vibration system, the vibration equation can be expressed as  

 𝑴𝑿̈ + 𝑪𝑿̇ + 𝑲𝑿 = 𝑭  (1) 
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Where M, C and K is mass matrix, damping matrix and stiffness matrix respectively. X, F is 

displacement vector and the force vector respectively. 

Let 𝝋 be the eigenvector matrix, the generalized mass matrix for mode 𝑖 of the system is given 

by 

 𝑴𝒊 = 𝝋𝑖
T𝑴𝝋𝑖  (2) 

When the external force at the root of the cantilever beam is along the transverse direction i.e. y 

direction, define parameter 𝑳𝒊 for the mode 𝑖 as 

 𝑳𝒊 = 𝝋𝑖
T𝑴𝑰  (3) 

Where 𝑰 is a unit vector. The modal participation factor matrix 𝜸𝒊for mode 𝑖 is  

 𝜸𝒊 =
𝑳𝒊

𝑴𝒊
  (4) 

The effective modal mass for mode 𝑖 is  

 𝑚𝑒,𝑖 = 𝑴𝒊𝜸𝒊
2  (5) 

Effective modal mass has mass dimension and the sum of all mode’s effective modal mass is 

equal to the total mass of the system in each direction.  

 ∑ 𝑚e𝑖𝑥
n
𝑖=1 = ∑ 𝑚𝑖

n
𝑖=1   (6)  

Where n represents an n DOF system, x represents along x direction, ∑ 𝑚𝑖
n
𝑖=1  represents the total 

mass of the system. 

The definition of effective modal mass for mode 𝑖 of Bernoulli - Euler beam is [15]  

 𝑚e,𝑖 =
[∫ 𝜌(𝑥)Y𝑖(𝑥)d𝑥

L
0 ]

2

∫ 𝜌(𝑥)[Y𝑖(𝑥)]2d𝑥
L

0

   (7) 

where 𝜌(𝑥) is mass per length, Y𝑖(𝑥) is mass-normalized eigenvector for mode 𝑖. 
For CB resonator, the equivalent mass for mode 𝑖 of the equivalent M-SDOF resonator is exactly 

the effective modal mass  

 𝑚r𝑖=𝑚e,𝑖  (8) 

It’s easy to get natural frequency 𝜔r𝑖  of the CB resonator, and equivalent stiffness of the     

equivalent M-SDOF resonator should be 

 𝑘r𝑖 = 𝑚r𝑖𝜔r𝑖
2  (9) 

Only considering the first four modes of the CB resonator, the equivalent mass of each mode is 

shown in Table 1. 

Table 1: Equivalent mass 

Mode Natural frequency 𝝎𝐫𝒊 Equivalent mass   𝒎𝐫𝒊 

1 1.8751042√
𝐸𝑟𝐼𝑟

𝜌r𝐴r𝑙r
4 0.6131𝜌r𝐴r𝑙r 

2 4.6940912√
𝐸𝑟𝐼𝑟

𝜌r𝐴r𝑙r
4 0.1883𝜌r𝐴r𝑙r 

3 7.8547572√
𝐸𝑟𝐼𝑟

𝜌r𝐴r𝑙r
4 0.06474𝜌r𝐴r𝑙r 

4 10.9955412√
𝐸𝑟𝐼𝑟

𝜌r𝐴r𝑙r
4 0.03306𝜌r𝐴r𝑙r 
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2.2 Validation of the equivalent M-SDOF model 

Driving-point dynamic stiffness is used to evaluate the correctness of equivalent M-SDOF model.  

Neglecting the mass of the connecting bolts and gaskets, driving-point dynamic stiffness of the 

connecting portion of the CB resonator is 

 Ds = −𝜔2𝑚𝑠  (10) 

The driving-point dynamic stiffness of the 𝑙r portion is[13] 

 Dc =
−𝐸r𝐼r(𝛽r𝑙r)3

𝑙r
3

cos(𝛽r𝑙r) sinh(𝛽r𝑙r)+sin(𝛽r𝑙r)cosh(𝛽r𝑙r)

1+cos(𝛽r𝑙r)cosh(𝛽r𝑙r)
  , 𝛽r = (

𝜌𝑟𝐴𝑟𝜔2

−𝐸r𝐼r
)1 4⁄  (11) 

Where 𝛽r  is flexural wave number,  𝐸r, 𝐼r  is Young's modulus and second moment of cross-

section of the CB resonator. 

Total driving-point dynamic stiffness of the CB resonator shown in Fig. 2(a) is 

 Dr = Ds + 2Dc  (12) 

Driving-point dynamic stiffness for mode i of the equivalent M-SDOF resonator is 

 Dr𝑖 =
−𝜔2𝑚r𝑖

1−𝜔2 𝜔r𝑖
2⁄

  (13) 

Concerning first n mode of the CB resonator, the total driving-point dynamic stiffness of the   

equivalent M-SDOF resonator is 

 De,n = Ds + ∑ Dr𝑖
n
𝑖=1   (14) 

The geometry and material parameters of CB resonator is shown in Table 2. 

Table 2: Parameters of CB resonator 

l 116mm ℎr 2mm 

lr 101mm 𝜌r 8500kg/m3 

br 30mm 𝐸r 100Gpa 

The driving-point dynamic stiffness of CB resonator and equivalent M-SDOF resonator is   

compared in Fig. 3. 

 

Figure 3:  driving-point dynamic stiffness of CB resonator. 

CB resonator has 3 vibration modes in 0-2500Hz frequency band while its dynamic stiffness has 

a peak value at each modal frequency. The dynamic stiffness of the equivalent M-SDOF resonator 

has the same peak frequency with the one of CB resonator. Dynamic stiffness value of the      

equivalent M-SDOF resonator has deviation with the exact dynamic stiffness of CB resonator due 

to the modal truncation when a limited number of modes of the CB resonator are involved in   
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equivalent M-SDOF resonator. The dynamic stiffness value of the equivalent M-SDOF resonator 

will goes much closer with the exact dynamic stiffness value when more modes of the CB resonator 

are introduced. 

3. Band gaps of the LR beam 

In this paper, the disperse relation equation of the LR beam carrying periodic array of spring-

mass resonators derived by spectral element method is used directly to get the band structure [13].  

 𝑐𝑜𝑠2(𝑞𝑎) + 𝛼1 cos(𝑞𝑎) + 𝛼2 = 0 (15) 

Where  

 𝛼1 = −[−cos(𝑘𝑏𝑎) + cosh(𝑘𝑏𝑎)] −
Dr

4𝐸𝐼𝑘𝑏
3 [sin(𝑘𝑏𝑎) + sinh(𝑘𝑏𝑎)]  (16) 

 𝛼2 = cos(𝑘𝑏𝑎)cosh(𝑘𝑏𝑎) +
Dr

4𝐸𝐼𝑘𝑏
3 [sin(𝑘𝑏𝑎)cosh(𝑘𝑏𝑎) −cos(𝑘𝑏𝑎) sinh(𝑘𝑏𝑎)]  (17) 

 𝑘𝑏 = (
𝜌𝐴𝜔2

𝐸𝐼
)1/4 (18) 

In the above, 𝑘𝑏 denotes the flexural wave number of the host beam. 𝜌, 𝐸, 𝐴 and  𝐼 is material 

density, Young's modulus, cross-sectional area and second moment of cross-section of the host 

beam. 

  Set the material of the host beam as steel, the Young's modulus is  𝐸 = 220GPa, material      

density is 𝜌 =7850kg/m3. Set geometric parameters as b=40mm, h=5mm, a=100mm. The band 

structure of the LR beam is demonstrated in Fig. 4. 

 

Figure 4:  band structure of LR beam. 

The curves shown in the Fig. 4 are amplitude of the real part of Bloch wave vector 𝑞𝑎/𝜋. The 

frequency ranges of |Re(𝑞𝑎/𝜋)| < 1are wave propagation bands while the other ranges are band 

gaps. The colour bars represent 4 band gaps in 0-2500Hz. The solid line and broken line represent 

the band structure of the LR beam carrying CB resonator model and equivalent M-SDOF resonator 

model respectively. This two resonator models produce two similar band structures showing the 

accuracy of the equivalent M-SDOF resonator model. Four band gaps in Fig. 4 are divided into two 

types while the light blue bar represents the first Bragg gap (B-bandgap) whose cutoff frequency is 

the first Bragg frequency 

 𝑓B,1 =
1

2π
(

π

𝑎
)2√

𝐸𝐼

𝜌A
=1200Hz (19) 
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 LR beam carrying two type resonator model has the same Bragg frequency because the Bragg 

frequency is independent of the resonator. The grey bar represents locally resonant band gap (R-

bandgap) whose position and width have great relationship with the resonant frequency and mass of 

the resonator. The position and width of the R-bandgap induced by two type resonator model are 

consistent showing the accuracy of the equivalent multiple resonator model. 

4. Vibration transmission of the LR beam 

LR beam is infinite periodic structure in band structure theory analysis while only limit sized 

periodic structure can be used in practical engineering application. Elastic wave band gap of the 

infinite periodic PCs is usually verified by vibration transmission of the corresponding finite      

periodic structure. Finite element method (FEM) method is very convenient in analysing vibration 

transmission characteristics of the finite LR beam. Take FEM software MSC.PATRAN/NASTRAN 

as the analysis tool, FE model of the LR beam containing 10 cells is shown in Fig. 5, size and    

material parameters of the FE model are coincident with the parameters in theory analysis above. 

x y

z

excitation

response

response

       

Figure 5:  FE model of the LR beam.                              Figure 6: experimental test setting. 

The sinusoidal excitation of amplitude of 1N with bandwidth from 0 to 2500Hz is applied to the 

left end and pike up vibration acceleration response A1(𝜔)   ,   A2(𝜔) at both end of the finite LR 

beam. Vibration transmission FRF can be obtained as 

 T = |
A2(𝜔)

A1(𝜔)
| (20) 

 In order to verify the results of the theoretical and numerical calculations, an experimental   

sample having same material and geometric parameters with the FE model is fabricated to test   

vibration transmission FRF. The sample is suspended with elastic ropes to set a free boundary   

condition. Strike one end of the LR beam sample using B&K2301 impact hammer along z direction 

to give an impact excitation. Hard hammer head is used to get a broadband force excitation        

covering 0-2500Hz.The transverse vibration response at the both end are picked up by B&K4507B 

accelerometers as shown in Fig. 6.  

Figure 7 shows the vibration transmission FRF of the LR beam sample which is measured and 

post analysed by B&K pulse system. Vibration transmission test result (displayed as solid line) 

shows that CB resonator produce 5 vibration transmission band gaps which are represented as grey 

bars A, B, C, D and E. FEM calculation result is also plotted as broken line in Fig. 7, the calculated        

vibration transmission band gaps in position A, B and D are consistent with the R-bandgap in     

Fig. 4. Band gaps C and E do not appear in the wave band structure because CB resonator only has 

bending vibration mode in wave band structure theoretical calculations while other type of vibration 

mode exist in vibration transmission analysis. 
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Figure 7:  Vibration transmission FRF of LR beam. 

Damping effect is also studied through Experimental test. Relevant research has suggested that 

damping added in the resonator could effectively broaden the width of the LR band gap. Although 

the damping effect is easy to clarify through theory analysis, there is no experimental verification 

until now, and great damping improvement is not easy in reality. The benefit of taking cantilever 

beam as the resonator of the LR beam is the ability of adding more damping into the resonator   

system through laying damping layer on the surface of the CB resonator. According to energy    

dissipation mechanism of damping material, greater damping could be obtained when more        

deformation of the damping material occurs. CB resonator could bring great damping effect within 

multi frequency band because of its rich modal deformation.  

 The experimental vibration transmission FRF is shown in Fig. 8 and the picture of CB resonator 

with damping layer on the surface is inserted in the bottom right corner. The solid and broken lines 

represent the vibration transmission FRF of the LR beam with and without damping layer on CB 

resonator. After laying damping layer, the vibration transmission band gaps A, B, C, D and E are 

broadened with effect of 3Hz, 35 Hz, 100 Hz, 127 Hz and 101 Hz respectively. More vibration 

modes of CB resonator should be concerned because greater damping could be introduced at high 

order modes.  

 

Figure 8:   experimental result of damping effect. 

5. Conclusion 

In this paper, the property of multiple vibration band gaps in LR beam carrying single periodic of 

CB resonators are investigated. Equivalent M-SDOF model of the CB resonator is established. Each 
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mode of the CB resonator is one SDOF resonator of the equivalent M-SDOF model while the    

corresponding effective mode mass is correctly the equivalent lump mass of the SDOF resonator. 

Dispersion relation of the LR beam is calculated through spectrum element method. The equivalent 

M-SDOF model could produce same band structure with the practical CB resonator model,        

validating the high accuracy of the Equivalent M-SDOF model. The equivalent M-SDOF model of 

CB resonator could offer accurate parameters to improve broadband vibration gap design. The   

multiple band gaps induced by CB resonator are verified through experimental vibration         

transmission test. Experimental test also show that band gaps could be broadened effectively laying 

damping layer on the CB resonator. CB resonator has great advantage in broadening vibration 

transmission band gap. 
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