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Watson transformation (SWT) method is too complicated to be practically applied. The T-matrix 
method is applied for wider frequency range, but it cannot be used to calculate structures with big 
length-width ratios.  The uniform geometrical theory of diffraction (UTD) is a high frequency asymp-
totic method, which is suitable for calculate scattering acoustic field at high frequency. A compari-
son between the characteristics of different methods is shown in Table 1. 

The central objective of this paper is to apply UTD method to scatter from a water-filler ax-
isymmetric body shell. In order to give a comprehensive understanding of the scattering mechanism 
of the water-filler axisymmetric body shell, the scattering effect of the baffle and the array manifold 
are discussed. Based on the diffracted sound field calculation results, the correlation between the 
flow noises received by a conformal array mounted on the axisymmetric body underwater is dis-
cussed, and three kinds of beamformer are designed in the flow noise field, of which the perfor-
mances of the beamforming are analyzed. 

Table 1: A comparison between the characteristics of different methods 

Method Application scope Characteristics 

BEM low frequency range limited by calculation scale 

SWT 
frequency domain and wave-

number frequency 
high complexity 

T-Matrix broad band frequency 
not suitable for structures 

with big length-width ratio 

UTD high frequency range 
clear concept in physics, 
easily using and concise 

 

2. Calculation of flow noise 

The uniform geometrical theory of diffraction was first developed by Kouyoumjian and Pathak[7]  
and is widely used in the field of aero acoustics or electromagnetic scattering computation. It is now 
widely applied in engineering projects. [8-12] However, it is seldom applied in underwater acoustics. 
In this paper, the UTD is introduced to calculate the correlation between the flow noises received by 
a conformal array mounted on an axisymmetric body to overcome the complexity problems of the 
conventional methods. 

2.1 The Uniform Geometrical theory of diffraction 
According to the uniform geometrical theory of diffraction, the asymptotic solution for the pres-

sure field Q on the surface due to the point source Q’ is given by[12] 
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where Q’ and Q denote the source and the field points, respectively, as shown in Fig.1, r refers to 
the length of the surface ray path between the source and the observation points, k refers to the 
wavenumber of the exterior medium (which is taken to be the free space), ρ and c are the density 
and the sound speed of the medium, respectively, and u(s) is the vibration velocity of the infinitesi-
mal source ds. 

The function V(ξ) in Eq.(1) is the hard surface Fock integral and is given by 
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where W2(τ) denotes the Fock-type Airy function defined by 
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and W2
’(τ) denotes the derivative of W2(τ) with respect to τ. The ξ is the generalized Fock parameter 

for the arbitrary convex surface, and is defined by 
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which is the arc length normalized by the wavenumber k and the radius of the curvature ρg(r). Note 
that ξ =0 defines the lit region, ξ<1 defines the penumbra region, and ξ >>1 defines the deep shad-
ow. Our solution is valid for all ξ≥0. The G(kr) in Eq.(1) is the Green function in the free field, and 
is given by 

 ( )
jkre

G kr
r



 . (5) 

 
Figure 1: Surface ray strip. 

The surface ray divergence factor D is given by 

 0 0

( ) d

rd rd
D
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In Fig.1, a pair of infinitesimally separated surface rays adjacent to the central ray from Q to 
Q’are shown. These adjacent rays constitute a surface strip, and the dψ0 in Eq.(5) refers to the angle 
between these adjacent surface rays at the source point Q’. The dψ is the angle between the back-
ward tangents of the same pair of adjacent surface rays at the point Q. The tangents cross at point 
Qc. The ρd is the distance between points Q and Qc. The dη(Q) denotes the width of the surface ray 
strip at the point Q. According to the generalized Fermat’s principle, rays are shed or diffracted 
from the surface ray along the forward tangents of the geodesic surface ray path. Hence, energy is 
continuously lost from the surface ray field due to rays shed or diffracted from the surface ray. 

The asymptotic solution for the pressure field Q can be calculated by adding the entire infinites-
imal sources on the surface. Assuming that S is the vibration area on the surface, the total pressure 
in the field point Q caused by the vibration area S can be written as 

 
( )

( | ) 2 1 ( ) ( )
4S

jk cu s j
p Q S V DG kr ds

kr

 


       
 . (7) 

2.2 Ray tracing on body surface 
The surface ray paths on the head of the axisymmetric body are calculated by using the dynamic 

programming method. The boundary layer of an axisymmetric body is shown in Fig.2(a). The 
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For any two hydrophones i and j, the correlation coefficient of the flow noise is given by 
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, (9) 

where E and the superscript * denote the mean value and the conjugate, respectively. And var 
means variance. 

The correlations of the 16 hydrophones in the black box are shown in Fig.5. The center frequen-
cies of the flow noise in Figs.5(a) and 5(b) are 15kHz and 30kHz, respectively. The bandwidth of 
the flow noise is 1 kHz. It can be seen that the correlations of the hydrophones on the curved sur-
face are stronger than that on the head plane at the designed center frequency. The physical reason 
is that the flow noises to the hydrophones on the curved surface mainly come from the point sources 
that are close to these hydrophones. And the flow noises of the hydrophones on the head plane 
come from all point sources. 
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Figure 5: The noise correlation in black box with center frequency at (a)15 kHz and (b) 30 kHz. 

3. Beamforming in flow noise field 

3.1 Calculation of array manifold 
In many engineering applications, the key problem in the beam pattern design and optimization 

of sensor arrays is to obtain array manifold. For an array consisting of omni-directional hydro-
phones, the array manifold is determined by the geometric relationships of the hydrophones. How-
ever, the directivities of the hydrophones mounted on an axisymmetric body are significantly influ-
enced by the scattering effect of the array baffle. The boundary element methods are widely used to 
calculate the scattering field. The boundary element model of the axisymmetric body is shown in 
Fig.6. In order to improve the accuracy of solutions, meshes are refined around the hydrophones. 
The black dots denote the position of the hydrophones. The serial numbers of the hydrophones are 
1#, 2# … 16# from left to right, respectively. The incoming signals satisfy the far field condition 
and plane wave condition. The signal frequency is set at 30 kHz corresponding to the array configu-
ration method of half-wavelength. The responses of the hydrophones to the incoming signals are 
calculated from directions -90° to 90° by a step value of 1°. Then the array manifold can be ob-
tained by combining the response vector. 

The responses of the hydrophones to the incoming signal from different directions are calculated 
by the boundary element method. The directivities of the hydrophones with serial number 1#, 3# 
and 8# are shown in Fig.7 (a), (b) and (c), respectively. It is noted that θ = 0° correspond to the di-
rection perpendicular to head surface of the axisymmetric body in Fig.6. It can be seen that the re-
sponses of the hydrophones to the incoming signal from different directions show significant differ-
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ences. Therefore, the responses of the hydrophones mounted on the axisymmetric body cannot be 
assumed to be omni-directional. 

 
Figure 6: The boundary element model of the axisymmetric body. 

 
Figure 7: The directivities of the hydrophones with serial number (a) 1#, (b) 3# and (c) 8#. 

3.2 Beamforming in flow noise field 
Once we have gotten the array manifold, the beampatterns can be obtained by using different 

beamforming methods. The beampatterns formed by the conventional beamforming (CBF)[13] meth-
od are shown in Fig.8(a). The main lobes are set to point to the direction of 0°. It can be seen that 
the side lobes of the beampattern considering baffle effects are significantly lower than the ones 
neglecting baffle effects. The solid line and the dashed line in Fig.8(b) shows the array gains (AG) 
versus azimuth angle for considering baffle effects and neglecting baffle effects, respectively. It can 
be seen that the maximum values of the AG correspond to the direction of 0°. Moreover, the AG for 
considering baffle effects is about 2 ~ 5 dB higher than that for neglecting baffle effects. In fact, the 
scattering effects of the baffle are roughly equivalent to enlarge the aperture of the conformal array. 
So the beampatterns have lower sidelobes and higher AG when considering baffle effects. 

   
Figure 8: The (a) beampatterns and (b) array gains of the CBF. 

The correlations of the flow noise in Section 2.3 and the array manifold obtained in Section 3.1 
are used to design different beamformers. In this paper, the beampatterns are formed by three dif-
ferent methods, which are the CBF, the Minimum Variance Distortionless Response (MVDR) 
beamforming and the SOCP beamforming. Figure 9 (a), (b) and (c) correspond to the main lobes 
pointing to the direction of 0°, -20° and -45°, respectively. The desired sidelobe levels of the SOCP 
beamforming are set to be -15 dB. It can be seen that the beampattern formed by the MVDR meth-
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od has the highest sidelobe level and a relatively narrower beamwidth. The beampatterns formed by 
the SOCP method has the most optimal sidelobe level (constant sidelobe level) and a relatively 
wider beamwidth. The beampatterns formed by the CBF has a moderate sidelobe level and beam-
width. It should be noted that the beamwidth of the SOCP beamformer would be narrower when 
setting a relatively higher sidelobe level. 

   
Figure 9: The beampatterns with the main lobes pointing to the direction of (a) 0°and(b) -20°. 

Figure.10(a) shows the array gains versus azimuth angle for the CBF, MVDR and SOCP beam-
formers. The array gains are calculated in the flow noise field. It can be seen that the MVDR beam-
former has the highest array gains. The SOCP beamformer has a relatively lower array gain com-
pared with the MVDR beamformer. The CBF beamformer has the lowest array gains. The white 
noise gain is calculated in the white noise field and represents the robustness of a beamformer. 
Fig.10(b) shows the white noise gains versus azimuth angle for the CBF, MVDR and SOCP beam-
formers. It can be seen that the CBF beamformer has the best robustness. The MVDR beamformer 
has the worst robustness. The SOCP beamformer has a moderate robustness. According to the anal-
ysis above, it can be concluded that the SOCP beamformer provides the optimal tradeoff among the 
sidelobe level, robustness, beamwidth and the array gain. 

   
Figure 10: The (a)array gains and the (b)white noise gains versus azimuth angle. 

4. Conclusions 

The correlations of the flow noise for an axisymmetric body are important for improving the per-
formance of the conformal array mounted on the underwater platform.  

The uniform geometrical theory of diffraction (UTD) is introduced to calculate the correlation 
between the flow noises received by a conformal array to overcome the complexity problem of the 
conventional methods. Based on the calculation results, three kinds of beamformers are designed in 
the flow noise field and the performances are discussed. The array manifold is calculated by using 
the boundary element method, and three kinds of beamformer are designed by using the correlation 
information of the flow noise and the array manifold considering the baffle effects. The perfor-
mances of the beamforming are analyzed. The following results are obtained. The flow noise re-
ceived by the acoustic array on the curved surface has relatively stronger correlation than that on the 
head plane at the designed center frequency. The responses of the hydrophones to the incidence 
signal from different directions show significant differences. The scattering effects of the baffle are 
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roughly equivalent to enlarge the aperture of the conformal array. The SOCP beamformer in the 
flow noise field provides the optimal tradeoff among the sidelobe level, robustness, beamwidth and 
the array gain. It should be noted that the beamwidth of the SOCP beamformer would be narrowed 
when setting a relatively higher sidelobe level. 
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