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The six-DOF micro-vibration isolator is essential for high-precision space systems in attenuating 

the micro-vibrations of the precise instruments. Its architecture is always designed based on the 

cubic-configuration Stewart platform, whose six flexible modes generally have different natural 

frequencies resulting in multiple resonances at various frequencies such that a uniform capability 

of vibration isolation cannot be achieved for the six flexible modes. To solve this problem, a six-

DOF micro-vibration isolator is proposed in this paper, composed of six single-axis isolators con-

necting onto two rings in parallel. The dynamic isotropic design of the isolator is studied to make 

the six nonzero natural frequencies identical. We consider the free-floating state of the isolator in 

modelling and analytically derive all the twelve natural frequencies. Six design criteria are ob-

tained by successively analysing the dynamic isotropic conditions. A decentralized active con-

troller is then investigated for the isolator of dynamic isotropy. The controller decouples the six-

DOF vibration control into six identical control of a single-axis vibration isolator. The same con-

trol gains in each single-axis isolator reaches the optimum simultaneously for all the flexible 

modes such that a best performance of vibration isolation can be achieved. Finally, we present an 

example of an isolator of dynamic isotropy. With the proportional plus integral compensator, the 

uniform corner frequency and optimal active damping can eventually achieved. 

 Keywords: Dynamic isotropic design, decentralized active control, identical natural frequency, 

six-DOF vibration isolator, free floating 

 

1. Introduction 

A super quiet environment is indispensable to the space systems with high-precision instruments, 

e.g. the space interferometers and the laser communication equipment, which are required to reach 

the motion stability of nanoscale [1, 2]. One of the most important techniques used to attenuate the 

micro vibrations of the instruments is to install a vibration isolation system between the disturbance 

sources and the instruments [3–5]. 

A six-DOF vibration isolation system can be designed based on the Stewart platform such that the 

high optical stabilization level in six directions can be reached. The vibration isolator can be mounted 

at the interface between the spacecraft bus, supporting a set of independently pointing telescopes, and 

the attitude control module, e.g. control moment gyros. Also the vibration isolator may be used at the 

interface between the spacecraft bus and the independent telescopes to be stabilized. It consists of an 

upper plate, a lower plate and six identical legs as the single-axis vibration isolators. The researches 

on this area have been carried out during the last two decades. A special-configuration Stewart plat-

form, called the cubic Stewart platform, was firstly proposed as the architecture of the six-DOF iso-

lation system (Geng et al. [6]). Later, the design (Spanos et al. [7]), experiment (Anderson et al. [8]), 

modeling (Hanieh [9] and Wu et al. [10]), analysis (Luo et al. [11]) and active control (Hauge et al. 
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[12], Preumont et al. [13] and Wang et al. [14]) of the cubic Stewart platform had been researched 

constantly to the present. However, the Stewart platforms of this type always have different natural 

frequencies of the flexible modes although the mechanical structures and control gains of all the sin-

gle-axis isolators are identical, making it impossible to achieve a uniform capability of vibration iso-

lation for six flexible modes. If the six flexible modes have different natural frequencies, the single 

gain of the feedback controller can only reach an optimal value for a certain mode or has to be adjusted 

to achieve a compromise in the suspension performance for the six modes. The best performance will 

be achieved if the system is designed in such a way that the modal spread, ( max min/  ), is minimized. 

One cubic Stewart platform was designed with a modal spread of 2.2 [13]. Another cubic Stewart 

platform was designed with six flexible modes: 3.02, 3.02, 3.26, 6.66, 7.27 and 7.27Hz, which limited 

the modal spread to 2.4 [15]. This paper aims to solve the problem, called the dynamic isotropic 

design to obtain a uniform capability of vibration isolation when a decentralized active control is 

employed. 

Ma and Angeles were the first to define the dynamic isotropic index and perform the isotropic 

design of the Stewart platform [16]. Jiang, He, etc. then studied the isotropic design of the Stewart 

platforms with full or redundant actuation [17–20]. However, these results are not applicable for vi-

bration isolation system since the system’s free-floating state has not been taken into account. There-

fore, we will consider the free-floating state of the system in design and employ a decentralized active 

control based on force feedback to decouple the six-DOF system into single-axis active vibration 

isolator.  

We will firstly establish the dynamic model of the system, derive all the natural frequencies in 

analytic form and educe the design criteria of complete dynamic isotropy. A decentralized active 

control is employed to decouple the system of complete dynamic isotropy and to obtain the uniform 

capability of vibration isolation. An example of a six-DOF isolator will finally be presented. 

2. Dynamic modelling 

2.1 Six-DOF micro-vibration isolator lying on two rings 

 

Figure 1 Geometrical description of a six-DOF micro-vibration isolator 

As shown in Fig. 1, the six-DOF micro-vibration isolator consists of an upper plate (payload plate), 

a lower plate (base plate) and six legs (single-axis isolators including actuators and sensors), which 

are connected by spherical joints. The radii of the upper ring are 1ar  and 2ar , and those of the lower 

plate are 1br  and 2br .The actuators with an equivalent stiffness of k  and a damping c  in the six legs 

are the active joints of the system and their output forces are denoted by 1af ,…, 6af . The six inde-

pendent single-axis translations of the actuators can generate six-dimensional movement of the upper 

plate relative to the lower one.  
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2.2 Dynamic model of the six-DOF isolator 

When there are no relative displacements or rotations between the two plates, the length of each 

leg is 0l  and the height is h . It is the equilibrium configuration of the isolator. We build three Carte-

sian coordinate frames: the inertial frame denoted by G-xyz and two body frames respectively at-

tached at the centres of mass of the lower and upper plates, denoted by O-xyz and O'-xyz. The orien-

tation of O-xyz and O'-xyz relative to G-xyz are respectively represented by the rotation matrices aR  

and bR . ap  and bp  respectively denote the displacements of the upper and lower plates. 0ap  and 

0bp  denote their initial positions. The local position vectors of the upper spherical joints relative to 

O'-xyz are denoted by 1a , ..., 6a . The local position vectors of the lower spherical joints relative to 

O-xyz are denoted by 1b , ..., 6b . 

The coordinate representations of ia  and ib  in G-xyz are respectively denoted by aiq  and biq :  

  , 1,2, ,6ai a i bi b i i  q R a q R b .  (1) 

When the platform is in the equilibrium configuration, one has a b R R E . The configuration of 

the isolator can be uniquely determined by twelve variables: ap , bp ,  , ,a a a    and  , ,b b b   , 

which are set as the generalized coordinates 

  
T

ax ay az a a a bx by bz b b b     x p p p p p p .  (2) 

The closed-loop equations can be established according to Fig. 1: 

  0 0 1,2, ,6i i a ai b bia b il     e p p q p p q ,  (3) 

where il  is the length of the leg and ie  is the unit vector along the direction of the leg. Taking the 

time derivative of Eq. (3) and the dot product with ie , the translational speeds of each single-axis 

isolator can be derived:  
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.  (4) 

We use am , 3 3( )a ax ay azdiag I I I I  to denote the mass and the principal moment of inertia of 

the upper plate. bm  and 3 3( )b bx by bzdiag I I I I  denote those of the lower plate. The mass and 

inertia of each single-axis isolator are much smaller than those of the two plates since it is usually 

composed of a piezoelectric actuator and a sensor. Hence, the dynamic equations of the six-DOF 

isolator in the equilibrium configuration can be written as 

 T

lx a  Mx Cx Kx J f ,  (5) 

where 12 12( )a a b bdiag m m M E I E I , 
T

lx lxcC J J , T

lx lxkK J J  and  
T

1 6a a af ff . 

3. Dynamic isotropic design 

3.1 Analytic natural frequencies 

For isolation of micro-vibration, we only need to implement the isotropic design in the equilibrium 

configuration. The values of uK  and uM  depend on the parameters of the geometry and the mass 

distribution. The geometry can be uniquely determined by  1, 2 6i i a ,  1, 2 6i i b  and h . 

The centres of mass of the upper and lower plates respectively coincide with the centres of the two 

circles where the spherical joints are located, which can be ensured by the structural design. Then ia  

and ib  can be parameterized by 1ar , 2ar , 1br , 2br ,   and   as shown in Fig. 1: 
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The length of every single-axis isolator can then be simplified as 

 

2 2 2
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2 cos 1,3,5

2 cos 2,4,6

a b a b

i

a b a b

h r r r r i
l

h r r r r i





    
 

   

,  (7) 

where ( ) / 2    . To make their lengths are equal to each other, we set 1 2a b sr r r  ， 2 1a b lr r r  . 

The length of every single-axis isolator will be 
2 2 2

0 2 coss l s ll h r r r r     .  

The analytic form of the eigenvalues of 1
M K  are consequently derived:  
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where  
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The system has twelve natural frequencies in total. The six zeros indicate the free-floating state 

(rigid body modes) in space. The other six nonzero natural frequencies are caused by the flexibility 

of the six single-axis isolators.  

3.2 Design criteria  

The goal of the complete isotropic design is to make the six nonzero natural frequencies ( 7 , 

8 , …, 12 ) identical. Define the ratio of the radii to the height: /ar h   and /br h   for simpli-

fication. One can observe that the natural frequencies are odd functions in the variable  , and   

cannot be zero (otherwise, the six-DOF isolator becomes singular) so that only the case of 0   

ought to be discussed. Hence, there are a total of twelve design variables of the geometry and the 

mass distribution subject to the constraints: 

 
0, 0, 0, 0 2

0, 0, 0, 0, 0, 0, 0, 0a b ax ay az bx by bz

h

m m I I I I I I

       

       
.  (10) 

According to 7 12   , six design criteria can be solved,  consisting of 

one geometric compatibility equation: 
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4 2 2 42 4 2

cos
2

   




    
 ,  (11) 

three equations of inertia: 

 
ax ay bx byI I I I   ,  (12) 

and three mass-geometry equations: 
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.  (13) 

The geometric compatibility equation (11) is the ingenerate compatible condition for solving the 

complete dynamic isotropy. Only by the analytic method, can this condition be discovered and always 

satisfied in design. In practical engineering, it is rather difficult to arbitrarily design the mass and 

moments of inertia of the bodies. A practical way to accomplish the dynamic isotropic design is to 

determine the geometry when the masses and moments of inertia are provided by other requirements. 

It can be seen that the geometry has one more variable than Eqs. (11) and (13), implying infinite 

groups of dynamic isotropic design. One can choose one by other design requirements. The remaining 

Eq. (12) indicates that the masses of the two plates should be distributed symmetrically about the 

local z axis.  

4. Decentralized active control 

To make the six-DOF system can be decoupled into six identical one-DOF isolators, we design a 

controller based on force feedback. As shown in Fig. 1, the forces measured by the sensors are 

 a lx lxk c  y f J x J x .  (14) 

The active control force is a negative feedback of the sensor output: 

 (s)a H f y .  (15) 

According to Eqs. (14) and (15), one can obtain  

 
( )

(
1 (s)

)lx xa lk c
H s

H



J x Jf x .  (16) 

Substituting it into the dynamic equations (5) and applying Laplace transformation, the closed-loop 

characteristic equations are  

 2 T T( )
1 (s) 1 (s)

lx lx lx lx

c k
s s

H H
  

 
M J J J J x 0 ,  (17) 

which can be decoupled in modal space: 

 
2 0s    (18) 

  
2

2 21 1
0, 7, ,12

1 (s) 1 (s)

i
i

c
s s i

H k H


   

 
.  (19) 

Due to 7 12    for the six-DOF isolator of complete dynamic isotropy, the gains in ( )H s  

can reach the optima simultaneously for the six flexible modes such that a best performance of vibra-

tion isolation can be achieved. 

Table 1 A group of design conditions and results 

Conditions 10, 15, 0.4, 0.25, 0.75a b ax ay bx by az bzm m I I I I I I         

Results 0.82850.5, , , 759 0. .344113h         

Natural frequencies   0.12222 Hz 7, ,12i k i 
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5. Example validation 

We give an example of dynamic isotropic design. The conditions and results are list in Table 1. 

If the stiffness and damping of the single-axis isolator are respectively set as 
610 N/mk   and 

20Ns/mc  , the natural frequencies of the six flexible modes will be 0.12222 38.65Hzk  . To 

realize the active damping and corner frequncy regulation, we design ( )H s  to be a PI compensator:  

   I
P

k
H s k

s
  .  (20) 

Due to 7 12    for this system, the single gain 
pk  leads to the identical corner frequency 

simultaneously for the six flexible modes: 

  1 7, ,12c i Pk i      (21) 

and the single gain Ik  can lead to the optimal active damping simultaneously for the six flexible 

modes: 

  
2+

0.707 7, ,12
2 1

I i
opt

p i

k c k
i

k





  


  (22) 

We calculate the inertia forces (torques) of the lower plate in Mathematica when the upper plat-

form is disturbed by the three dimensional force (1N) and torque (1Nm) as shown in Fig. 2. The 

forces along X and Y directions are identical due to the symmetricity of the system and so are the 

torques about X and Y directions. The corner frequency can be changed by regulating 
pk , implying 

changing the bandwidth of vibration isolation. When we set 15pk  , the corner frequency is 

9.6625c  Hz. And the optimal gain 1362Ik   can be figured out to achieve the optimal active 

damping. It can be seen that the same gains in the single-axis isolator enable the six-DOF isolator to 

achieve the identical corner frequency and optimal active damping. 

 
 

Figure 2 Frequency response of the inertia force (torque) of the lower plate 

We then build a simulation model in ADAMS to compute the acceleration of the lower plate in 

time domain when the upper platform is disturbed by a six-dimensional micro-motion. It should be 

noted that the reason for the twelve zero frequencies in ADAMS is that ADAMS solver automatically 

used eighteen generalized coordinates for dynamic modelling, introducing six dependent generalized 

coordinates. The redundant six rigid modes are relevant to the six dependent generalized coordinates, 

which will not affect the results. For instance, the absolute displacements and x-y-z Euler angles are 

set as 
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  (23) 

Fig. 3 shows the linear and angular acceleration of the lower plate. When no control is applied to 

the system, the values of the acceleration grow fast to the level of 105 mm/s2 and degree/s2 within one 

second. When we apply the active control with 15pk   and 1362Ik  , the vibrations are signifi-

cantly reduced to level of 102 mm/s2 and degree/s2.  

 

 
Figure 3 Acceleration of the lower plate without an with control in ADAMS 

6. Conclusions 

A six-DOF micro-vibration isolator enables space systems to reach a six-DOF stability of na-

noscale. This paper solve the problem of the dynamic isotropic design of a six-DOF isolator lying on 

two rings in a free-floating state. The parameters of geometry, mass and inertia are set as the design 

variables. Six design criteria are obtained, including one geometric compatibility equation, three 

equations of inertia and two mass-geometry equations.  

The six-DOF vibration control can be decoupled into six single-axis ones when a decentralized 

force feedback control is applied. With the complete dynamic isotropy, the system possesses a uni-

form capability of vibration isolation. For instance, with the proportional plus integral compensator, 

the uniform corner frequency and optimal active damping can be obtained simultaneously for the six 

flexible modes. 
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