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Based on the energy method, the dynamic model of the multiple cylindrical shell-plate coupled 

system with arbitrary boundary conditions is constructed. By applying four types of coupling 

springs with arbitrary stiffness at the junction of the coupled structure, the mechanical coupling 

effects are completely considered. Each of the plate and shell displacement functions is ex-

pressed as the superposition of a two-dimensional Fourier series and several supplementary 

functions. The unknown series expansion coefficients are treated as the generalized coordinates 

and determined using the familiar Rayleigh-Ritz procedure. The steady responses of forced vi-

bration of the coupled system are obtained. Results of present method show good agreement 

with the results calculated by finite element method (FEM). In addition, the effects of the dy-

namic vibration absorber on the vibration characteristic of multiple cylindrical shell-plate cou-

pled system are studied. 
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1. Introduction 

The vibration characteristic analysis of underwater structure is an important process during un-

derwater vehicle design. There are many literatures [1, 2] study the single part of underwater struc-

tures, such as cylindrical shells, stiffened shells, plates and the other structures. On the basis of the-

se dynamic models, the simulation method which can calculate the cylindrical shell-plate combined 

structure was developed in the past several decades. 

Tavakoli and Singh [3] presented the state space method to analyze the free vibration of a her-

metic can which is composed of a circular cylinder with two circular end plates, and the analytical 

results are compared with model measurements. In 1992, Cheng and Nicolas [4] study the inherent 

characteristics of a circular cylindrical shell closed at one end by a circular plate with various 

boundary supports. However, they neglect the in-plane motion of the circular plate. Huang and 

Soedel [5] used the receptance method to solve the cylindrical shell-circular plate structure with 

shear diaphragm-shear diaphragm boundary conditions. Tso [6] studied the wave propagation 

through cylinder/plate junctions and provided a theoretical basis for the study of the bulkhead. 

Meixia Chen et al. [7] study the free vibration of ring stiffened cylindrical shell with intermediate 

large frame ribs. It’s worth noting that the equations of motion of annular circular plates are used to 

describe the motions of ribs.  

From above analysis, it’s known that the emphasis in the cited references is the free vibration of 

a circular cylindrical shell coupled with end plates, and few literature are available on the free and 
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forced vibration of the multiple cylindrical shell-plate coupled structure. In this paper, a unified 

dynamical model for multiple cylindrical shell-plate coupled system with arbitrary boundary condi-

tions is present. Firstly, the whole model is divided into multiple substructures according to the 

junctions of shell–shell and shell–plate. In order to eliminate the potential discontinuities and accel-

erate the convergence of the displacement functions, three displacements for the cylindrical shell 

and the annular plate are invariably expressed as a modified Fourier series. The translational and 

rotational springs with independent stiffness are introduced to simulate the complex boundary and 

coupling conditions. Finally, an analytic method is presented to analyze free and forced vibration of 

coupled cylindrical shell-plate structure. To validate the present method, some results for classical 

boundary conditions are compared with those calculated by FEM. Furthermore, the effects of the 

dynamic vibration absorber on the frequency response of multiple cylindrical shell-plate coupled 

system are discussed in detail. 

2. Analysis procedure 

2.1 Description of the model 

Consider a two cylindrical shells and one circular plate coupling system as shown in Fig. 1. 

The cylindrical shell is described with the ( , , )r x  cylindrical coordinate system, in which sx , sr  

and s denote the axial, circumferential and radial directions, respectively. The displacements of the 

cylindrical shell with respect to this coordinate system can be defined by siu , siv  and siw ( 1,2i  ) 

in the sx , s  and sr  directions,  respectively. siL ( 1,2i  ), sh , sR  are the length, thickness and middle 

surface radius of the shells, and sE , s , s  are Young’s modulus of elasticity, Poisson’s ratio and 

density. For the plate, annular plate model is utilized in the coupled system as a basic structure 

component, which can be used to model the annular and circular plate. The geometrical and materi-

al parameters of the annular plates are described by pa , pb  (≡ sR ), ph , p , p  and pE . The geo-

metric dimensions of the annular plate are defined in a local orthogonal co-ordinate system 

( , , )p p ps x . The width of plate in the radial direction is ( )p p pR b a  . 

For the circular plate, the equations of strain energy appear to become singular at the pole of 

the coordinate system. However, it has been observed that the existence of the singularity makes a 

negligible difference to the physical response of the plate. Therefore, the method adopted here is to 

assume the inner radius of the annular plate tends to 0, which simply avoids the co-ordinate de-

pendent singularity. 
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Figure 1: Coordinate system of the multiple cylindrical shell-plate coupled system. 

For the sake of simulating the arbitrary elastic boundary and the coupling conditions, artificial 

spring technique is adopted here. According to the boundary conditions, four distributed springs 

along the boundary are taken to match bending moments M, transverse shear S, tangential shear 
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force T and axial force N separately. The different boundary and coupling conditions can be easily 

realized by changing the stiffness of the corresponding springs. At the left end of the cylindrical 

shell, the 
0 v0 0u wk k k, ,

 
denote the linear springs in x ,  and r direction and 

0k  denotes the rotational 

spring stiffness around   direction. Similarly, a set of springs 
1 v1 1 1u wk k k k, , ,  can also be applied 

to the right side. 

 

2.2 Theoretical formulations 

The displacement admissible functions of the cylindrical shell and annular plate can be expedi-

ently expressed by an improved Fourier series composed of the standard Fourier cosine series and 

auxiliary functions. For conciseness, the detailed expressions are not shown here. They could be 

found in reference [8]. 

Once the form of solutions has been established for the plate and cylindrical shell, the remain-

ing task is to find a suitable set of expansion coefficients that will ensure the series satisfies the 

governing equations, boundary conditions and joint continuity in some way. A solution can be 

obtained either in strong form by letting the series satisfy the relevant equations exactly or in 

weak form by solving the series coefficients approximately. The Ritz method is a direct method 

to find an approximate solution for boundary value problems. Since the solutions are constructed 

sufficiently smooth over the solution domain, the unknown series coefficients are calculated by 

using the Rayleigh–Ritz technique, which is actually equivalent to solve the governing equations, 

the boundary conditions and coupling conditions directly.  

The entire energy for the coupled cylindrical shell-plate system includes five parts: the stain en-

ergy sV  and the kinetic energy sT  for the cylindrical shell, the stain energy pV  and the kinetic energy 

pT  for the annular plate, the spring elastic potential energy bV  denote the energy caused by boundary 

conditions at the ends of the shell, the potential energy cV  stored at the junction between adjacent 

substructures and the energy function fV  caused by the external loads. 

According to the thin plate theory (Leissa, 1993), the strain energy and kinetic energy for the 

annular plate can be written as in reference [8]. Consider displacement continuity conditions at the 

junction and boundary conditions of the coupled system, the potential energy stored in the boundary 

and coupling springs can be written as   
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The frequency response function (FRF) of the coupled structure can be calculated considering 

the potential energy 
fV  caused by an external point loads. Under the application of the point force 

located at (     ), the potential energy fV can be written as  

(3)  
2

0 0
0 0

( ) , ( )
L

f ui i vi i wi i i i iV f u f v f w x x R x dx d


           

Where ui vif f, 
 
and wif

 
are the external force in the sx , s  and sr  directions, respectively. i=s, p 

denote the cases of the external force acting on the cylindrical shell or circular plate respectively 

and  denotes the Dirac function. 

When all of the energy expressions are prepared, the Rayleigh-Ritz technique will be used to ob-

tain a weak form of solutions. Thus the Lagrangian energy function can be written as 
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(4) 
1 1

( ) ( )
ps

NN

s s p p c b f

i i

L V T V T V V V
 

          

Where sN and pN is the number of the cylindrical shells and annular plates in the coupling 

structure. For simplicity and generality in the analysis, only one annular plate and two cylindrical 

shells are considered in the following formulation. The current solution procedure can be utilized to 

derive the characteristic equation of the coupled cylindrical shell-plate structure with more substruc-

tures readily. Substituting the total energy into Eq. (4), the eigenvalue problem is formulated by 

minimizing the Lagrangian function with respect to the arbitrary coefficients. This corresponds to 

the equations: 

(5) 0
L

q





  

Where q  denotes the coefficient vector of the series expansions. The equations (5) yield a set 

of liner, homogeneous algebraic equations in the unknown coefficients. Then the final system 

equation can be obtained and summarized in a matrix form as 

(6)  2 K M q F   

Where K and M are the stiffness and mass matrices of the coupling structure respectively. F
represents the external force vector. They are written as 

(7) 
1 1 2 1

1 1 1 1

1 1

2
2 1 2

0 0 0

, 0 0

0 00

s p s p

s s p s

T T

p p

s
s p s
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   
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K M   

For conciseness, the detailed expressions for the stiffness and mass matrices will not be shown 

here. Finally, the natural frequencies and eigenvectors of the coupled structure can be obtained by 

solving the eigenvalue problem of Eq. (6). Then, the vibration frequency responses can be obtained 

by modal superposition method. 

3. Numerical examples and discussions 

3.1 Validation 

In a companion paper [8], the authors show that the free vibration characteristics of coupled cy-

lindrical shell-plate systems with arbitrary elastic boundary. The availability of present method is 

demonstrated by comparisons of results with the FEM and hammer experiment. This section will 

concentrate on the forced vibration analysis of the cylindrical shell-plate coupled system subject to 

point force. Unless otherwise specified, the cylindrical shell and the annular plate have the follow-

ing geometry properties: length of the shell 1 2 0.6ms sL L  , thickness 1 2 0.002ms sh h  , mean 

radius 1 2 0.24s sR R m  , outer diameter of circular plate 0.24pb m , inter diameter 
410p pa b . 

Material properties are as follows: 
3

1 2 7800 /s s p kg m     ,
11 2

1 2 2.1 10 /s s pE E E N m    ,

1 2 0.3p     . The circular plate is coupled to the middle of shells along the axial direction. 

For reasons of space, we just consider the coupled cylindrical shell-plate structure with free-free 

end boundary and a rigid coupling condition.  

Three points including point A(          ) and point B(          ) at the cylindrical shell 

and point C(           ) at the middle circular plate are introduced in the local coordinate systems 

respectively. A unit harmonic force     
    is applied on the cylindrical shell at point A. In fol-

lowing calculation, the truncated numbers of shell and plate will be uniformly set as 12s pM M  , 

10s pN N   to obtain accurate response results. The range of analysis frequencies is from 1 to 200 

Hz and the frequency step is set as 1 Hz. The accuracy of present model is validated by making 
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comparisons with the finite element program ANSYS. The finite element model of the cylindrical 

shell-plate coupled structure, consisting of 4-node SHELL181 elements, is meshed into 15360 

meshes to obtain reasonably converged results. The full calculation procedure (direct solver) is em-

ployed in ANSYS. 

 
Point Normal displacement Meridional displacement 
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C 

  

Figure 2: Responses for the cylindrical shell-plate coupled structure subjected to the normal point force.   

(dB re=        ) 
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Figure 3: Responses for the cylindrical shell-plate coupled structure subjected to the meridional point force. 

(dB re=        ) 

Figures 2 and 3, respectively, show the comparison of responses at Point B and C for the cou-

pled structure subjected to the normal and meridional point force at Point A between ANSYS and 

present method. It can be found that the responses of the cylindrical shell-plate coupled structure 

subjected to the point force show many resonant peaks. This is expected since these external loads 

can both excite symmetric and antisymmetric vibration modes of the coupled structure. Since no 

damping has been introduced on the present and finite element models, resonant peaks are supposed 

to reach an infinite level but are limited thank to a chosen frequency calculation step. Therefore, the 
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amplitude of the resonant peaks are not significant because they are strongly affected by the finite 

discretization of the frequency range. Except for the locations of resonant peaks, the displacement 

responses of the two methods are in excellent agreement, which validates the accuracy of the pre-

sent method to predict the forced vibration of the coupled structure. It should be noted that the com-

putational time as well as the number of degree of freedom (DOF) accounts for the advantages of 

present method compared to the traditional finite element method. In the calculation, only 2772 

DOFs are needed for present method and ANSYS requires more than 90000 DOFs. Thus, the pre-

sent computational procedure is simple and effective, which make it of great interest to engineers. 

As shown in the strain energy expressions of the circular plate, in-plane and out-plane vibration 

separate completely. When the independent annular plate is subjected to normal or meridional point 

loading, one of the in-plane and out-plane vibration just will be aroused theoretically. However, due 

to the coupling effects among the junction of the two components and three displacements of the 

cylindrical shell, the point load at any direction can excite both in-plane and out-plane vibration of 

cylindrical shell and circular plate simultaneously. From the comparison of the two figures, it can 

be observed that the number of resonant peaks to cylindrical shell is more than that of the circular 

plate and the response at point B is larger than that at point C, which owing to the fact that the vi-

bration distribution is mainly concentrate on the cylindrical shell rather than the middle plate in the 

considered frequency range. 

3.2 Dynamic vibration absorber 

In vibration analysis, dynamic vibration absorber (DVA) is a tuned spring-mass system which 

is commonly designed and tuned to suppress the vibration of a harmonically excited system. In this 

section, the effects of the single-degree-of-freedom DVA on the vibration characteristics of the cy-

lindrical shell-plate coupled structure will be investigated based on the present method.  

For many years there has been considerable interest in the design of dynamic vibration absorb-

ers which change the location of the resonant peaks and reduce the undesirable vibration. The basic 

assumption of this method is that the vibration response of the objective structure is reduced to zero 

at its resonance frequency when the resonance of an attached absorber is tuned to match that of the 

main structure. That is, the energy of the main structure is completely absorbed by the tuned dy-

namic absorber. Since the lower resonant frequencies are of interest in many engineering problems, 

the method can be applied to any elastic body including cylindrical shell for suppressing the ampli-

tude of vibration at a certain frequency. 

 

                    

Mass

 

Figure 4: The first mode shape of coupled structure.           Figure 5: The coupled structure with DVA. 

As shown in Fig. 4, the mode shape corresponding to the fundamental frequency (25.01Hz) of 

the cylindrical shell-plate coupled system is exhibited. It can be seen that the maximum deformation 

of the coupled structure generate at both ends of the cylindrical shell. Thus, the following problem 

can be addressed by the use of the spring-mass system to avoid the excitation of structural reso-

nance at fundamental frequency. We consider a cylindrical shell-plate coupled structure with the 

attached single-degree-of-freedom spring-mass system at point D(          ). The mass of the 

DVA is   (       ) and the stiffness coefficient of the spring between the mass and the main 
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structure is   (       ). For comparison’s purposes, table 1 shows the different absorber parame-

ters used in the analysis. It is worth noting that the mass    is the modal mass corresponding to the 

fundamental frequency, which is determined by performing the displacement-normalized of vibra-

tion mode. 

Table 1: properties of the mass-spring system used 

DVA No. mass stiffness mass ratio   

Ⅰ   =0.15315   = 3781.85            

Ⅱ   =0.31048   = 7666.92 1/100 

Ⅲ   = 0.62096   = 15333.83 2/100 

The mass ratio μ is defined as the ratio of the absorber mass to that of the coupled system.    
and    meet the following relationships: 

(8)  
2

2a ak f m   

Where the subscript a denotes the absorber and f  is the frequency of the vibration mode which 

is suppressed. 

The displacement of the mass block has a form of 

(9) j tXe X   

The kinetic energy and the potential energy stored in the spring-mass system can be described 

as 

(10)  
21

2 a
a a s x L

V k w


  X   

(11) 
21

2
a aT m X   

Substituting Eqs. (10-11) into the Lagrangian energy function, we can obtain the vibration 

characteristics of the cylindrical shell-plate coupled system with dynamic vibration absorbers. 

 

 

Figure 6: Responses for the cylindrical shell-plate coupled structure attached absorber. 

Figure 6 displays the dynamic responses in normal directions at point B. It is interesting to ob-

serve that there are two resonance frequencies on the both sides of the fundamental frequency of the 

objective system, and neither of which equals the original fundamental frequency of the the cylin-

drical shell-plate coupled system. That is, the objective system is tuned to move the fundamental 

frequency away from a troubling excitation frequency, which avoids the occurrence of the reso-

nance. Besides the changed fundamental frequency, the other natural frequencies remain unchanged 

as expected. In addition, as the mass ratio   increases, the width of the split between the two peaks 

increases. However, the amplitude of the displacement response has no explicit trend against the 
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mass ratio. From the above analysis, the spring-mass system can reduce the undesirable vibration 

and achieve the simulation of the vibration absorber. 

4. Conclusion 

This paper studies the forced vibration characteristics of cylindrical shell-plate coupled system 

with general boundary conditions. All kinds of boundary conditions can be easily obtained through 

changing the stiffness of the corresponding springs. Hence, a uniform solution can be obtained for 

predicting the forced vibration characteristics of the coupled cylindrical shell-plate system regard-

less of the boundary or coupling conditions. The theoretical results are verified by comparing the 

present solutions with those obtained from the finite element method. In addition, the present meth-

od is also employed to solve the cylindrical shell-plate coupled structure with an attached DVA, 

which proves a favourable performance to suppress the vibration amplitude at a specified frequency. 
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