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l. INTRODUCHON
The aim of this worlt is to study the dispersion and attenuation characteristics for waves in
porous media by using a poroelastic theory developed by Biot [1.2] in fifities and sixtis. and later
modified by Attenborough [A]. Biot‘s theory for wave propagation in a poroelastic medium
predicLs the existence of two longitudinal wave typs and one transverse wave type The fast
longitudinal wave and the transverse wave corrspond to the two types of waves in an elastic
solid. and the slow longitudinal wave is sometims regarded as a difi'usion wave All three of the
waves are attenuated. I

The problems are concerned with waves at an interface between air and an air filled porous elastic
half space. and with wav: in a layer between air and an air filled porous elastic half space. In
order to obtain the frequency equations which give relations between frequency and the complex
wavenumber. we shall solve the equations of motion governing the wave motion in the air and in
poroelastie media subject to appropriate boundary conditions. The dispersion curves and the
attenuation curves are obtained numerically by solving the frequency equations. It is found that
similar to purely elastic systems. for the two media system surface waves are almost non-
dispcrsive. and for the three media system wavs are dispersive. In the both cases. the low velo-
city modes have higher attenuation. _

2. THEORY

For the modified Biot'theory. the properties of pom—elastic medium are specified by the adiabatic
bulk modulus {or air K. . bulk modulus of individual grains K,. shear modulus G , bulk modulus
of the asemhlage of particles K.-. average mas density p. fluid density p, . porosity 0-. flow
resistivity 0‘. tortuosity q. pore shape factor S, . the ratio of specific heats for the fluid y and the
Prandtl number NP;

Governing Equations

A rectangular coordinate system is used. The location of an origin depends on the problems that
we shall study. The positive a-azis points to the air. We assume that a plane wave propagates in
the x-direttion.

in air. the equation of motion is given by

, = l 61%v o. a, W . (1)

where C,= JKJ p, and m isa potential function of displacement field in air. ‘
In a pom—elastic medium. when the time harmonic motion (exp (—itut) ) is assumed and-there is
no displacement in the y direction. the equations of motion can be given by [3]

' z
. V101}: + “M $1) = a—atg-(Pd’: + P/ 951) ‘

2

v‘(uM¢..+ M4») = alga», m + p. m) <2)
, =1 614%

Vtfi. a—rat
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where to}. $3. ¢. are potential functions of displacement field and

H = (K, -K.)=/ (D —Kn) + K, + 46,/ 3

GM = K,.(K, — K.)/ (D —K,) = C

M = K}/ (D — K.)
D =K,(1 + n(K,/K, — 1))

p. = fl, / [mt — 2709/ U]

A =(2q1wp,i/ nrr)"2/$,

7(a) = JUNO} 1.,(A) .

x, =(yK,)/ [1+2ry-tirtJEA)/(Jfit)l

C- = (Gb/ [9(1 — pf/ (PA-ll)“2

When the potential functions are known, the displacement vector can be determined by

in = V491 (3)

in air and I

‘7: = V¢a + Vxéejl (4)

in solid. where y is the unit vector in the y-direction. The relative displacement of fluid and

solid. in terms of the potential functions. is given by

— p .
w = w, ~ pr_/¢. y (s)

e

Constitutive Equations

ln Air. the expressmn of pressure in terms of the potential function is given by

1' = —K. Vim (6)

Stresses in porous media. in terms of displacements. are obtained from the constitutive equations.

The constitutive equations are given by [3]

.1“ =He -otM§ ~26“), +2“)

1;, =Gei, (7)

l’, = N; — aMe

where _I,, are total stresses. P, is pressure in the pores. c,, are strain components. 2 = V17, and

g = vw.

Boundary Conditions

There are two types of boundaries. One is the contact between air and a poroelastic medium. On

such an interface. conditions given by Deresiewicz and Skalak [5] are employed. The total stress
in the z-direcuon equals the prefiure in air. '

‘u = Pl (8)

The shear stress I”. vanishes since air can not sustain shear stress.
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‘1: = 0 (9)

The pressures in the air and in the pores are equal.

P; = P. (10)

The condition of the z-component displacement continuity requires

V:1=u:2—W:2 (II)

The other type of interface is a contact between two diflerent poroelastic media. In this case we
use the conditions suggested by Biot [2] so that the total stresses. fluid pressure and solid displace— '
ment are continuous. also that the normal component of the relative displacement is continuous at
this boundary. The equations are given by ’

(l2)

 

. 3. THE TWO MEDIA SYSTEM

First let us consider the two media system. The origin of a coordinate system is set at the inter—
face. We are seeking a solution for wave field which decays with increasing distance from the
interface. Such a solution satisfying the equations of motion subject to the boundary conditions
can begiven by

¢I=Ale-IV':E(il|-1UI (13)

where A I is an arbitrary constant independent of time and position. q. = \/l - (V/ C, )2 and the
complex velocity V=wl k : m is angular frequency. 1? is complex wavenumber.

In the half space. the potential functions of wave field can be given by

4,2 = “I‘m: 4, AJQIeAvH huts-m)

m = (A 12“" + Age/e‘V':)e"‘~-"’ (in)
t6. = MJ‘WBW'M’

where A 2. A ,. A . are constants and it can be found that the equations oI motion are satisfied if

q, = J1 w v, )2

q. =J
q. = x/1_'—(T/::3S

 

  

:2 }= [2A / (—ByW—MC ))l

A =(aM)z-HM

B =flp, + Mp, —2uMp,
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C =pf-Ppt
Q, =(uM/ V,z—p,)/(p—H/V3)

Q, =(H/ V,’—p)/(t>/ -aM/ V3)

In the present problem. the wavenumber is always complex valued. The phase velocity is given

by V..,,, = ml ReUt ) rather than the complex velocity V = w/ It. The condition of exponential
decay in the direction of the negative 2 axis requires that Rechj) >0. Since we assume that

waves propagate in the positive x-direction. IntUt ) must be greater than zero,

The frequency equation for the two media system

On substituting the general solutions into the boundary conditions by use of the constitutive

equations. we can obtain a system of 4 homogeneous equations in unknowns A It 141.143 and A..

The condition for existence of non-trivial solution requires that the coefficient determinant is zero
which gives the relationship between the frequency and the complex wavenumber

‘It WWI—1) 91(1“Q.) p,/pr+t

mLF/c ((IIQ,—nM) —2GQ,)/c _<(1{-aMQ_)rTL)=—2<;)/c 2g.

 

Cu

0 44er ‘29. (1+q3) [s
. , I. l j

K,,(‘—):/ G (LfltM—q aM )/ G t ‘ HMQt—aM )/ G 0
Ca V] ' ‘ I

Eq.(l.5) represents the frequenCy equation for interface waves between an air and a poroelastic

medium This frequency equation is in the form of 4 by 4 determinant. Equating the real part

and the imaginary part of the frequency equation to be zero respectively givs two simultaneous

equations in three unknowns frequency tn. the real part and the imaginary part of the

wavenumber. k. and k,. For given material constants. we can solve it numerically. We fix to and

solve the simultaneous equations to obtain the corresponding values of It, and It,.

Numerical results for the two media problem

In the air, the material constants are given

K. = 1.4 xio’ra p. = 1.2kg/ m’

In the half space. the parameters chosen correspond to an acoustically-hard soil or sand [3]

K,=3.X10“’Pa K.=8x10‘Pa. y=m q=Jfi

p= Itxlo’kg/m’ p, = mtg/m3 G=tt', Np, =JW

cr= 3 x 105er m‘ n: 0.4 s, = 0.5
We vary frequency from 100 Hz to 500 Hz.

For the parameter we chosen the bulk speeds are given by

C. = m/ Re (It .) = 13b6 ml 5 -—-- Fast longitudinal Jpeed

C, = m/ Re (k4) = 894 m/ .t -— Transuerae speed

C. =341m/r ---Snund :peedt'n air

C- = (0/ Re(k-) = 38 - 81ml: --- Slaw longitudinal speed
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lt is found that three surface waves are possible on the surface of an air-filled poroelastic half-
space with parameters corresponding to a dry soil. One of these corresponds to the surface wave
frequently predicted in the solution for the field due to a point source above animpedance boun-
dary. However the dispersion and attenuation are less than predicted over a rigid porous half
space. Nevertheless. it is highly attenuated. This mode has a speed close to the sound speed of air
and may be called a pseudo-Stoneley wave. The second surface wave type which has a speed
slower than the bulk transverse wave speed. is a pseudo-Rayleigh wave haying low dispersion but
fairly high attenuation. The third type has very little attenuation of disperston and travels close
to the fast longitudinal wave speed.

We also examine changes in the influence of some material constants. Change of the pore shape
factor has only little effect on those surface modes. But difl‘erent porosities change the attenuation
for the pseudo-Sloneley mode. The high porosity has a rapidly attenuation and it depends on fre-
quency very much. Change in 6 effects the pseudo-Rayleigh mode but has little influenceon the
pseudetoneley mode.

4. THE THREE MEDIA SYSTEM

We assume that the origin is at the interface betWeen the two poroelastic media. The thickness of
the layer is H. Similar solutions to the two media system are used for the two half spaces. In the
layer, the potential function of wave field can be given by

¢21 = (A sum (MM) 4- lectl3(kq/I:) + AyQHfian‘fi)

4‘ ".decnmkq”; new - it.

$1, = (Ago/irinUwu: l + B:,Q,,cm(ltq,,:) + Ay!in(kq":)

+By€UI(ltq,,:))eru-
.t.

(16)

$11 = (Aurirt(ktj.,:) + B4,car(kqd; ))eld- ,t.

where A y . A y- A 41- Ba. Ba: and 8.: are constants and

q]! =

9x: =

941 =

:2} = [1011”: “ AHICIPIIPeI — ZH,p,M, + 4Hlprlel + 4C§plprl

_ ‘ClzplleMI + PFMfi') + Hlpcl ‘ 26.9,, + p, M, 1/ (20.1, MI _ 02))

Q" = '(kzcl ' map}: + C.qfi)/ (t ‘11, — (4039/ + 11/9/71)

Q: = —(k2H1 - u;an + H,q‘f)/ “ac, _ “2pr + 61%;)

where l in a subscript indicates the layer.

The Frequency Equation for the three media system

Similarly from the boundary conditions. Eqs(8-ll) at : =l-l and EqSUZ) at : =0. we can obtain a
system of 10 homogeneous equations in ten unknowns. The vanishing of the coefficient deter-
minant gives the frequency equation. The elements of the determinant are given by '

‘1 Ll =‘UI ¢xP("Hk‘h)- ‘1 I.’ =‘“’-‘ (1”qu Wyeth ‘3 L.) :5”! (fl/‘4]: 31/1th

“1,: =9” ("hf-t )‘Irl- ‘7 Ls =5“ (HM-I )‘lxl- '1 La =“"l (Hkh: )Pfl/ Priv
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a” =cax(Hkq., )p,// p". “.1 =I(,,(I—q,2 )exp(—leg,).

a; 2 =;in(1‘;l¢q,, )(qfiQ/1(HJ—dfill )+q,3,(M, -aM, )+Q,,(H, -ZG, —aM, ).

411.: =cu: (1‘1qu )(q,’,Q,. (H, —aM, )+q,2,(M, —aM, )+Q,,(H, -2c,—aM, ).

a 1 . =n'n (Hkqd )(qJ’Q‘, (M, -aM, )+q,i(l~l, -aM, )+(H,-7.G, -aM, ).

a , 5 =ca: (Hm )(q,;‘Q,, (M, ~aM, )+q.,=(H, —nM, )+(H, —2G, —aM, ).

a 2 6 =co: (Hkq‘, )q.,(2p,,/ pr; 0, -uM, +M4 ).

a); =—.n'n(l'1kqg )quDfl/ AqGI—GMH-Ml ).

a), =—2cm(11'kq,,)q,,0,,. a” =2n’n (Hkq,,)q,,Q,,. a” =—2co:(Hkq,,)q,,‘

a, 5 =2n'n “1qu )q,,, a” =xin (I!qu )( l—q},.)p,,/ pc,‘

:13 -: =cu: (Ii/(41., )( 1-4}, )p,_y/ pm a“ =K. (qlz-l)sxp(‘Hkq I),

a . 3 =sin (likqu )(qfiQ‘, , aM; -q,:,M; +Q,,aM2).

a 4 J =CUJ(H’¢II_H )(quQuaM‘ "1131/": +Q/IUM2)-

a. .. = n'n (Hkq,, )(qu, -Q,,q(,:AI, +aM, )‘

a . 5 =cm' (Hkqu )(qu, —Q,,q,fM, +aM, ), a“, =—ca.\' (Hkqu )unl.

“a 7 =1“ ("kid )4 4: MI- “m=(‘1fi(Q/IUMI'MI)+Q/IGMI)-

055 =11:13(‘1MI—Q:IMI HEM - 05.0 =-‘IIIMI' “5.5 =q.’(Q.uM ‘M )‘Qr «TM.

a 5,. =q‘3(aM ~Q‘ M )—aM. a ,_... =q.M.

a“ =(q,:,Q,,(H/-aM,)+qfi(M,—aM,)+Q,,(H,-ZG,-an).

an =q,fQ,, (M, —aM, )'+q,,2(H, -aM, Huh-201 -aM, ).

an» =‘IM(ZP[I/ Pact—“MI +MI )>

a” =(qu, (H —aM )+q,3(M —uM )—Q, (H —26 —aM ),
an.» =q,zQ. (M -aM )+q,3(H -nM )—(H -25 -aM ). duo =—q .(2p,/ pt G —aM +M ).

U7, =2an/151. an =2‘1u5v~ 51.7 =(‘I421—1X-7mn/ Pd-

uu =—2q,Q,G. a” =-2q,G. a7.” =(q3-l)Gp,/p...

as.) =Qn- as: =1- “5.0 =‘9uP/I/ Pa.

‘75.! =‘Qr‘ "as =‘1- “3.10 mum/9(-

092=q/IQ11- “0.4 =qu' “01 =‘P/1/Pa-

“0,5 “1—11 Q; - an ='|lx- No.10 =57] / Pg,

010.5 =q/r. 010,4 =unu - a no: ='1»

‘1 ma ="1;- ‘ um =“lyQp ‘1 10,10 =1-

Numerical results {or thethree media synem

In the air. [he parameters are uszd as beforé.
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In the porous layer:

K,,=3.xto“pa 1r,=t,xto'l’a 7:1.4 q, =¢53

p,=l.7xlO’kg/m’ p,,=l.2kg/m’ GI=K” H=L0m

a', = 3.6 x 10‘ NH m‘ n, = 0.3 5,.l = 0.36 N,” = «(T7

In the porous half space

It. =8.x10"l"o K, =sxto°Pa 7=l,4 q =«fi

p=2.sx103kg/m3 p, =t.2kg/m’ G=lt', A1,, = E

a: 3 x 10“le m‘ n = 0.02 s, = 0.35

Solutions of the frequency equation are plotted in a three dimensional frame. frequency. phase
velocity and attenuation Three dispersive modes are shown in the figure. One of those is found
only for a small range of frequency. The three curves have no Intersections. It can be seen that
not only the phase velocity but also the attenuation change with frequency. At low phase veloci-
ties. the attenuation drops very rapidly to the order of 10“.
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Figure 2. Dispersion and allenualion characterinics of waves in Lha three media system.
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