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1. INTRODUCTION

The aim of this work is to study the dispersion and attenuation characteristics for waves in
porous media by using a poroelastic theory develuped by Biot [1.2] in fifities and sixties. and later
modified by ALLenborough [4]. Biot's theory for wave propagation in a poroelastic medium
predicts the existence of two longitudinal wave types and one iransverse wave type. The fast
longitudinal wave and the transverse wave correspond o the two types of waves in an elastic
solid, and the slow longitudinal wave is somelimes regarded as a diffusion wave. All three of the
waves are atienuated. . '
The problems are concerned with waves at an interface between air and an air filled porous elastic
half space, and with waves in a layer between air and an air filled porous elastic half space. In
order 1o oblain the frequency equations which give relations bevween [requency and the complex
wavenumber. we shall solve the equations of motion governing the wave motion in the air and in
poroelastic media subject Lo appropriate boundary conditions. The dispersion curves and the
attenuation curves are obtained numerically by solving tbe [requency equations. It is found that
similar to purely etlastic sysiems. for the vwo media system surface waves are almost non-
dispersive. and for Lhe three media system waves are dispersive. In the both cases, the low velo-
city modes have higher attenuation. )

2. THEORY
For the modified Biot'theory. the properiies of poro-elastic medium are specified by tbe adiabatic
bulk modulus for air X, . bulk modulus of individual grains X, . shear medulus G . bulk modulus
of the assemblage of particles Xy. average mass density p. fluid density p, . poresity Q. flow
resistivity ©. mrtuosuy q. pore shape [actor S, the ratio of specific heats for the fiuid ¥ and the
Prandt! number N, .

Governing Equations .

A rectangular coordinate system is used. The location of an origin depends on the problems that
we shall study. The positive z -axis points to the air. We assume that a plane wave propagates in
the x-direction.

In air, the equation of motion is given by

v = L %-9; e

where C, = V K,/ py and ¢| is a potential function of displacement field in air.

In a poro-elastic medium. when the time harmonic motion (exp (~iwt ) ) is assumed and ihere is
no displacement in the y direction, the equations of motion can be given by [3]

y 2
VHH 3 + aM¢y) = e—a‘,(m +p; $2)

2
VZ(GM¢3 A MP)= %r[P{ &y +p. @) )
7¢ 1 a ¢l
4= —T —ar-r
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where $;. ®. ¢, are polential functions of displacement field and
H = (K, ~K,) (D —K,) + K, +4G,/ 3
aM = K (K — K )W (D—Ky)}=C
M =K (D —-K)
D =K+ 0(K/K —-1)
p. =g,/ [Q01 ~2T(A)/ M)
A= (2%p, i/ O3S,
T = VT (A J4x)
K, = (K, W N420y=1T{/ N, A (U N, .\)]
Cu= Gyt (01 = pj/ (pp, M3
When the polential functions are known, the displacement vector can be delermined by
= Vi, : (3)
in air and .
G, = Vs + Uxda ¥ (4)
in solid. where ¥ is the unit veclor in the y-direction. The relative displacement of fluid and

solid. in terms of the potential functions. is given by

W = vy~ vx‘;Lm.% (5

Constitutive Equations
In Air. the expression of pressure in lerms of the potential function is given by
rs= —K V:¢; - (6)
Siresses in porous media. in 1erms of displacements. are oblained from the consiitutive equations.
The conslitutive equations are given by (3]
t; =He —aM{ ~2G(e;; +ey)
Li = GE;’ (7)
Py = M{—aMe

where t;, are total siresses. £, is pressure in the pores. ¢;, are strain components, e = Vi, and
{=VW.

Boundary Conditions

There are 1wo types of boundaries. One is the contact between air and 2 poroelastic medium. On
such an interface, condilions given by Deresiewicz and Skalak [5]) are employed. The total stress
in the z-direction equals the pressure in air.

L =Py (8)

The shear stress t,. vanishes since air ¢an nol sustain shear stress.
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& =0 (9
The pressures in the air and in the pores are equal,
Py=p, (1)
The condition of the z-component displacement continuily requires
v = u—W,a (1)

The other type of interface is a contact between 1wo different poroelasiic media. [n this case we
use the conditions suggested by Biot [2] so that the wotal siresses, fluid pressure and solid displace-
ment are cOnlinuous. alse that the normal component of the relauve dispiacement is ¢ontinugus at
this boundary. The equauons are given by

P;'-*"P; (12)

U =i

W=

1
=

~ 3} THE TWO MEDIA SYSTEM

First let us consider the (wo media system. The origin of a coordinale svstem is set at the inter-
face. We are seeking a solution for wave field which decays with increasing distance from the
interface. Such a solution saiisfving the equations of motion subject to the boundary conditions

can be given by
& =A|e4q':em“""" (13)

where A4 | is an arbitrary constani independent of 1ime and position. g, = +/ 1 — (V/ C,)? and the
complex velocity V =w/ & w is angular frequency. ¥ is complex wavenumber.

In the half space. ihe potential functions of wave field can be given by
by = (AT 4 A,Q,e“": Jlits =i )
$3= (43" + 4,0, ' Jetits—iun) (14)
A B
where A2, A). A, are constanis and it can be found thatl the equations ol maotion are satisfied if
o = VIZWIV, P
=JT-(V/V,
ge=VI-(V/CY

:;’ }= 347 (-8B -aac))]

A ={aM} -
B =Hp + Mp, — 2aMp,
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C =p}] —pp,
0, =(H/VZ—p) (o), —aM/ V3)

In the preseni problem, the wavenumber is always complex valued. The phase velocity is given
by V., =/ Re(k) rather than the complex velocity V = w/ k. The condition of exponential
decay in the direction of the negative z axis requires that Refkg; )} >0. Since we assume that
waves propagale in the positive x-direction, /m{k ) musl be greater than zero.

The frequency equation for the two media system

On substituting the general solutions into the boundary conditions by use of the constivutive
equalions, we can obtain 2 system of 4 homogeneous equations in unknowns A ). Ax. 4and A,
The condition for existence of non-trivial solution requires that the coefficient determinant is zero
which gives the relationship between the frequency and the complex wavenumber

L UI(QI—I) qx(]'-Qr) Pf/Pr+1
PR A _ Vo _ Vot npm
K F1G (UIQ.-aM Xg-Y=260, )/ G (Uf-aMQ Xg=F=26) G 2. |,

0 -23, Qs =g, (1+43)

| Vo, Vol 15y
K, (=—=)/C (- P{M=-Q, aM) G (- FP(MQ, ~aM ) G 0
., v, : T,

Eq.(15) represents the frequency equation for interface waves bélween an nir and a poroelastic
medium. This {requency eguation is in the form of 4 by 4 determinant. Equating the real part
and the imaginary part of ihe frequency equation 10 be 2ero respectively gives 1wo simultaneous
equations in three unknowns frequency w. the real part and 1he imaginary part of the
wavenumber. X, and k;. For given material constantg, we can solve it numerically. We fix w and
solve the simultaneous equations 16 obtain Lhe corresponding values of &, and &;.

Numerical results for the two media problem
In the air. the material constants are given
K, = 1.4 x 10°Pa po = 1.2kg/ m?

In the half space. the parameters chosen correspond 1o an acoustically-hard soil or sand [3]
K =3.%10"pa K,=8x100P2. y=14 g¢g=+13
P=1.X100kg/ m® p; =12kg/m® G=K, N, =v07
c=3x10°Ns/ m* Q=04 S, =05

We vary frequency from 100 Hz o 500 Hz.

For the parameter we ¢hosen, the bulk speeds are given by
C.=w/ Re(k,)=1306m/ 5 ———— Fast longitudinal speed
C, =w/ Relk)=8%dm/s —— Tran:\;erse speed
C,=¥lm/s == Sound speed in air
C-=w/ Re(k_)=38 —-81m/s ——— Show longitudinal speed
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It is found that three surface waves are possible on the surface of an air-filled poroelastic half-
space with parameters corresponding to a dry soil. One of these corresponds to the surface wave
frequently predicted in the solution for the feld due to a point source above an impedance boun-
dary. However the dispersion and allenuation are Jess than predicted over 2 rigid porous half
space. Nevertheless, it is highiy attenuated. This mode has a speed close 1o the sound speed of air
and may be called a pseudo-Sioneley wave. The second surface wave 1ype which has a speed
slower than the bulk transverse wave speed. is a pseudo-Ravleigh wave having low dispersion but
fairly high attenuation. The third type has very litile attenuation or dispersion and travels close
10 the fast longitudina) wave speed.
We also examine changes in the influence of some material constants. Change of the pore shape
factar has only litile effect on those surface modes. But different porosities change the attenuation
for the pseudo-Sioneley mode. The high porosity has a rapidly attenuation and it depends on fre-
quency very much. Change in G effects the pseudo-Rayleigh mode but has little influence.on the
pseudo-Stoneley mode.

4. THE THREE MEDIA SYSTEM
We assume that the origin is a1 the interface between the two poroelastic media. The thickness of
the layer is H. Similar solutions Lo the 1wo media sysiem are used [or the 1wo half spaces. In the
layer, Lhe potential function of wave field can be given by

$u = (Azsin (kg 3) + Bucoslhy ) + 4y Qysin kg, 2)
+ By Qyens kg, = Ne'w =it
by = (A0, sinlhq, )+ ByQ,cos(hgy,2) + A ysin kg, 2 )
+ Bycos{kg,z)e'w =i 6
by = (A gsinlkgyz) + By cos (kg o= e = it
where As . 4y.Ay. By. By and B, are consiants and
4rr \/m
g =J1-(V/V, ¥
JIZWicy?

[}

qu
v 2
vf:} = (2(H2p] ~ 4H\Cip Py = 2H,p M, + 4Hp} M, + ACF p,py

i

- 4CIZPIP,HMI + oM + Hipy ~ 2C, oy + oMY (2(H, M, ~ C7))
Qi = —-(k%C, - wp}, + Ciyf M (kH, — 'py + quﬁ)
Ou = =(k2H, — w’p, + H,9) (k%C, - wpf + Cgd)

where | in a subseript indicates the layer.

The Frequency l::q'uation for the three media system

Similarly from 1he boundary conditions, Eqs(8-11) at ==X and Eqs(12) at = =0. we can obtain a
system of 10 homogeneous equations in ten unknowns. The vanishing of the coefficienr deter-
minant gives the frequency equation. The elements of the determinant are given by

ay, =—q,exp{—fkg,).  a,y=—cos(Hkgy}q;;Qu. @,;=sin (Hhgy dgr Q).
a4 =cos (Hieg, M. @y =sin (HFkg, Wy . ay s =sin(Hkg oy pyif Pur.
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a1 =cos(Hkgylos! Pa. ay; =K, (1—q dexp(—Hkg,).

azz =sin (kg NafQyi (H, —aM, ¢/ (My=aM, 1+ Qy. (H, =2G, —aM, ).
aqy =cos(Hkq) NgfQ (Hi=aM, Mg /(M =aM, 40, (H,=2G, —aM, ).
a1, =sin (Hkgy Xg 70 (M —aM )+q.}(H,=aM, 4 {H, =1G, —aM, ).

a2y =cos (Hkg, Ngi0, (M —aM) Y+q (H —aM, )+(H,—2G,—aM, },

@y =cos(Hkqy g ul20:f P4Gi—aMy +M, ),

a2y =—sin (Hkqulgu(20;:/ Py Gr—aM +M,;).

a3z =—2CDI(Hkq'”)({‘”Q”. 33 =2:in(Hkqﬂ)q,..Qﬂ. Q34 =—2co:(Hkq,,)q,,.

ays =2sin(Hkgylgy. a3 =sin(Hkgo X1—gdlop/ pu.

s scos (Hkgu X1=g 2 o1/ o a4y =K.(gi—1)axp(—Hkg ).

2 =5in (Hkg  Ng QoM =4 M, +QaM ),

a3 =cos(Hkg,, )(?_fer.r.' aMl —q i M, +@rraM ).

a4q =sin (Hkg, Ng i M, —0u gl M, +aM, ),

a4 =cos (Hkq, Xgi M, Q4,7 M, +ad; ), Qg =—cos (Hkgy }guM;.
aaq =sin(Hkgy g M, . a5 =g (QrraM; =M, )+ Q aM, ).

[~]
-
»

=]
=
>

agy =y flaM —Qu M, J+aM. . ase ==quM;, ayp =g 0,aM—M }-Q; aM .

a5 5qaM —2, M )—aM. @y =¢M.

=(g/ 0 (Hy —aM, )+ g { M —aM 4y (H, —2G, —aM; ),
s =g 70, (M, —aM, Y+q (K, —aM; Y+ (H,=2G, —aM, },

Aoy =9 2P,/ PaGr—aM + M, ).

a4 =(¢/Q; (H —aM )+q (M —aM )0, (H ~2G —aM ).

aps =¢,°Q. (M —aM )4 g i —aM )=(H =26 —aM ). @10 ==9.2p;/ p.G —aM +M).

aq1=29,,0,G;, aq14=2¢4Gr. ans =(Q£“")G:9ﬂ/ Pg.
a,4==2¢;Q,G. a15=-29,G. aipn =(g~-1)Gp,/ p..
a3 =2y ags =1 @gs =—quPp/ Pu.

agg =—0y. apg=—1. @gio=¢Ps/ Pc.

ayz =q,Q1. Qo4 =Qt- @91 ==p;f pu.

Qag =~q;Qy. Qo9 ==y, aq10 =Py / P..
2102 =¢yr. @104 Z¢uQu. apr=-1
Tips =Y, - e e =4, . d1o40 =1.

Numerical results for the three media system
In the air. the parameters are used as before.

220 Proc..CLA. Vol 11 Part 5 (1988)




Proceedings of the Instltute of Acoustics

INTERFACE WAVES AT AIR/AIR-FILLED POROELASTIC MEDIA BOUNDARIES

In whe porous layer:

K,; =3 %10 Pa Ky =1.x100Pa y=14 . g =I5

P =17x10%kg/ m* py=124g/m’ G =K, H=10m

g, =36x10*Ns/m* 1, =03 Sv =036 N, =07
In the porous half space

L. =8, x10% Pa K, =5%x108Ps y=14 g =+33

pP=26x100kg/m® p, =12kg/m® G =K, N, =v07

o=3x10°Ns/ m* n =002 5, =036

Solutions of the frequency equation are plotted in a three dimensional frame, frequency. phase
velocily and atienuation. Three dispersive modes are shown in the figure. One of thoge is found
only for a small range of lrequency. The three curves have no intersections. It ¢an be seen that
not only the phase velocity but also Lhe atlenuation change with frequency. At low phase veloci-
ties. Lhe attenuation drops very rapidly 1o the order of 1072,
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Figure 2. Dispersion and attenuation characleristics of waves in the 1hree media sysiem.
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