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Force Limit Vibration (FLV) is used to decrease the over-testing problem associated with tradi-

tional vibration testing. The complex two-degree-of-freedom system (TDOFS) seems to give the 

most reasonable conservative force limits. However, the complex TDOFS model is based on free 

boundary conditions for the mounting structure, which is true for spacecraft mounted on a launch 

vehicle, but not necessarily true for other cases such as a payload mounted on a spacecraft, which 

requires fixed boundary conditions. In this work we set an example of fixed boundary condition, 

and compare the force limit predicted by the complex TDOFS method regarding the free boundary 

condition and the fixed boundary condition. The result indicated the force limit suggested by free 

boundary condition CTDOFS is not conservative enough in certain frequency band, while the 

corrected CTDOFS concerning fix boundary condition gives reasonable conservative force limit 

prediction. Some experimental methods to derive the mass parameter for the estimation of force 

limit is also presented. 
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1. Introduction 

Vibration testing is an important way to verify the design and manufactory of spacecraft and space 

hardware. Conventionally the acceleration of hardware-shaker interface is controlled to specifications, 

which are mainly obtained from the envelope of acceleration peak of coupled model analyse, tests 

and flight environment. These specifications are well known to cause over-testing problem at the 

resonance frequencies, leading to over-weight, over-design, high costs and long schedule [1]. 

One of the ways to ease the over-testing problem is the Force Limit Method (FLM). Based on the 

based fact that the anti-resonance points of interface acceleration and force would be strictly at dif-

ferent frequency and appear alternately, the FLM control the vibration with both interface accelera-

tion and force, which appears to be real-time notching of the input acceleration, through this process 

the over-testing at acceleration resonance would be greatly reduced [2]. 

Proper force limit is crucial during Force Limit Vibration (FLV), yet it is difficult to measure the 

force at interface compare with the measurement of acceleration, for the complicit set up of force 

measurement, and it should be in series within the mounting surface and the hardware. There are 

mainly three ways to calculate the force limit: the semi-empirical method, the simple two-degree-of-

freedom system (TDOFS) method, and the complex TDOFS method. The semi-empirical method 

derives the force limits without requiring specific information on the mounting structures. However, 

they are based on the extrapolation of interface force data for similar mounting structures and test 

articles and/or comparison with the TDOFS methods and other parameters. The simple TDOFS 

method uses a simple a spring–mass–damper model to predict the force limits. It also requires infor-

mation on the mounting structure. This simple method generally gives reasonably conservative force 

limits. However, the model is sometimes deficient because it neglects the contribution of modes with 
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natural frequencies away from the exciting frequency (residual mass effect). The complex TDOFS 

model uses a TDOF spring–mass–damper model to predict the force limits, and it appears to be the 

most complete and versatile model [3]. However, the complex TDOFS model assumes free boundary 

conditions for the mounting structure. Although these boundary conditions appear to be natural for a 

spacecraft mounted on a launch vehicle, this is not necessarily true for other cases. For example, in 

the case of an electronic component mounted on a spacecraft antenna, fixed boundary conditions are 

usually assumed [4]. Cote et al. [5] shows that given certain precautions, the complex TDOFS gives 

good estimates of the force limits of fixed boundary conditions. The parameters need to be carefully 

obtained in order to get proper force limit. This paper gives an example of fixed boundary hardware 

on a spacecraft, and shows how to get the parameters, gives the comparison of force limit with free-

boundary and fixed-boundary TDOFS, also the predicted force limit with FEM.  

2. Introduction to complex TDOFS 

In the following contents, as well as in FLV, the test unit is named as load, such as the satellite or 

the hardware, the mounting structure is named source, such as the launching vehicle or the mounting 

structure.  

2.1 Free-boundary complex TDOFS 

Divide the load and source from the interface, with mode analyse theory, both of load and source 

could be simplified into asparagus model [6]. For a structure attached at its base, it can be demonstrated 

that the relation between the interface force and the interface acceleration is described with the aspar-

agus model shown in Fig. 1(a) and expressed mathematically as: 
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where F is the total base force,  ̈U  is the base acceleration, mi is the effective mass of mode i, H 

is a transfer function, ω and ωi are the angular frequency of excitation and natural frequency of mode 

i, j is the complex number, and ξi is the damping ratio of mode i.  

With given damping ratio, the relationship of transfer function H and frequency ω is shown in Fig. 

2Figure 2. H trends to 1when the natural frequency ωi significantly higher than ω, H trends to 0 when 

the natural frequency ωi significantly lower than ω. According to this fact, the mode with ωi close 

with ω is left, the modes with ωi lower than ω are neglected, the modes with ωi higher than ω is 

condensed as a mass attached to the base, namely residual mass Mi. The asparagus patch model is 

simplified to a TDOF model as shown in Fig. 1(b). 

(a) 

m1

m2

mn

               (b)  

Figure 1: (a) Asparagus patch model of the structure and (b) complex TDOF model of load and source of 

free boundary condition. 
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Figure 2: Frequency function vs frequency. 

2.2 Fixed-boundary complex TDOFS 

Compare with the free boundary condition, there are two interface of the source in fixed boundary 

condition, one is interface with the load, the other is the fixed boundary of source. The apparent mass 

of source would be different with the free boundary condition: 
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im
 is the equivalent effective mass, the way to obtain it is introduced below. H is the transfer 

function of fixed boundary condition, the different with H of free boundary condition is shown in Fig. 

3. The transfer functions are similar at lower frequency band, but different at higher frequency band. 

H is not unit but trends to infinite at higher frequency band, so the residual mass is no longer the sum 

of mi of higher frequency modes, and it is estimated with Eq. (3) : 
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ωc is the angular frequency at the center of current frequency band, it uses the average value over 

the defined frequency band to calculate the residual mass. 

 

Figure 3: Comparison of transfer function of fixed and free boundary conditions. 
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3. Methods to obtain the effective mass 

The effective mass indicates the sensitivity of each mode to a base excitation (or spatial coupling 

between each mode and the excitation), the accuracy of mass parameter determines the accuracy of 

the simplified model, which is crucial on the estimation of force limit. Here three different methods 

to obtain the mass parameter are presented: FEM methods, shaker experiment, and hammer test; and 

the first two methods are applied and verified. 

3.1 FEM 

Use big mass to simulate the fix boundary condition is a possible way to obtain the equivalent 

effective mass of source with fixed boundary condition. It was shown that the critically damped ap-

parent mass is a good approximation of the lumped mass for a free source. The same approximation 

may be used for a fixed source [5]. 

Apparent mass is: 

 

   

   

1

1 1

2 2

2

( ) ( ) ( ) ( )

/ /
( )

/ 1 2 /

v n

i v i

i v i

i i v

i ii

i i i

F
Q m H m H m H

H
j

U

  

  

   

     



  

  




 

 

 (4) 

Given real damping factor, apparent mass at certain mode υ is: 
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Apparent mass critically damped, Q=0.5: 
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Because the frequency function only slightly depends on the amplification factor for lower and 

higher modes, Eq. (5) and Eq. (6) may be combined to give: 
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The amplification factor is generally much larger than 0.5. Thus, Eq. (7) may be simplified to: 
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Hence, the equivalent effective mass could be obtained using the apparent mass at real damping 

and critical damping factor.  

3.2 Shaker experiment  

This method is mainly used for loads, and it is the same for free or fixed boundary conditions. The 

apparent mass around certain resonant frequency is [7]: 
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Given damping parameters for each mode, the equation became system of linear equations of ef-

fective mass, residual mass, and apparent mass. 

3.3 Hammer test 

It is difficult to mount the source on shaker through the interface of source and load, so the mass 

parameter could be solved with hammer test. For fixed boundary condition, the source is usually 

defined as the mounting structure, and the boundary of mounting structure is fixed boundary. As we 

hammer each mounting point, the hammer force and acceleration at mounting points are measured. 

Assume the force and torque of each axial are decoupled, displacement in one axial is: 
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In which: 
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Namely Accelerance matrix [8]. 

Consider the condition as on the shaker: 
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Total force at interface: 
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Total apparent mass: 
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4. Methods application and verification 

Test hardware as shown in Fig. 4 are designed to verify the methods for mass parameter obtain-

ment. Mass of load is 4.9 kg, mass of source is 2 kg. Only sine sweep on Z direction is considered. 
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(a)  (b) (c)  

Figure 4: (a) source (b) load and (c) combined structure of test hardware. 

4.1 Equivalent effective mass of source 

4.1.1 Big mass to simulate fixed boundary 

104 kg mass is attached to the mounting points of source, the effective mass of mode analyse are 

listed in Table 1. Comparison of fix boundary and free boundary also shown in Table 1. 

Table 1: effective mass of source 

 Mode 1 2 3 4 

Fixed boundary Frequency / Hz 2.3 181.1 512.8 878.2 

Effective mass / kg 10E4 1.08 3.6E-3 0.17 

Free boundary Frequency / Hz 139.9 188.2 463.2 935.6 

Effective mass / kg 0.09 0.99 0.34 0.20 

The first mode of fixed boundary is the mode of attached mass, should be ignored here. The fol-

lowing 2 and 3 mode could compare with the free boundary condition. 

4.1.2 Critical damping factor analyse 

Apparent mass of source at different angular frequency are calculated. 

 

Figure 5: Source apparent mass at different frequency. 

The equivalent effective mass thus can be calculated using Eq. (8): 

Fist mode of natural frequency 181Hz: (54 - 1.65) / 50 = 1.05; 

Second mode of natural frequency 512Hz: Critical damping lower than real damping, neglected;  

Third mode of natural frequency 878Hz: (8.47 - 0.23) / 50 = 0.165. 

4.1.3 Comparison of residual mass between free and fixed boundary condition 

Source apparent mass is different for free and fixed boundary condition, the calculation for residual 

mass is also different, the comparison shown in Table 2: 

Table 2: Residual mass of source 

Frequency band 5~45 45~56 56~71 71~89 89~100 

Free boundary 2.0 2.0 2.0 2.0 2.0 

Fixed boundary 105.3 67.9 43.3 27.5 18.4 
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4.2 Effective mass of load 

4.2.1 FEM modal analyse 

Table 3: Effective mass of load 

Mode 1 2 3 4 5 

Frequency / Hz 51.8 75.3 93.9 94.2 111.9 

Effective mass / kg 3.70 3.9E-20 0.53 2.7E-17 1.6E-19 

4.2.2 Shaker test 

Load mount on shaker, 5~1000Hz, 0.5g sine sweep test, measure the force and acceleration at 

mounting point, the apparent mass shown in Fig. 6. 

 

Figure 6: Load apparent mass at different frequency. 

4.3 Comparison of force limit of free and fixed boundary conditions 

As the mass parameters obtained, the force limit could be calculated using complex TDOFS 

method [6]. The interface force could be calculated with coupled FEM model, those force are com-

pared in Fig. 7. 

 

Figure 7: Comparison of force limit of free and fixed boundary condition. 
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The force limit predicted with free boundary condition leads to under-test, and the force limit 

predicted with fixed boundary condition is more conservative, compare with the force peak using 

traditional acceleration control test, the over-test is eased at 52Hz with 20×log(2286N/850N)=8.6dB. 

5. Conclusion 

(1) Application of complex TDOFS method in fixed boundary condition is introduced. 

(2) Mass parameters are crucial in force limit calculation. Mass parameters obtaining methods are 

introduced, especially the equivalent effective mass of source. The methods are verified with 

a test hardware, from which we can find different methods gives similar mass parameter, so 

the effectiveness of the methods is verified for this sample. 

(3) Force limit calculated with fixed boundary simplification complex TDOFS is very conserva-

tion, for some sample too conservation (not included in this paper). Force limit calculated with 

free boundary TDOFS, when applied in fixed boundary condition, is sometimes under-estimate. 

In actual applications, the envelop itself always includes margin. It is suggested to consider 

both methods and FEM simulation results, for a proper force limit. 
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