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Localization of multiple sources have been studied for a wide range of applications including 

room geometry inference, source separation and speech enhancement. The beamformer-based and 

subspace-based methods are most commonly used for spherical microphone arrays. The beam-

former-based methods suffer from spatial resolution limitations, while subspace-based methods, 

such as multiple signal classification (MUSIC), suffer from performance degradation in noisy 

environment. This paper proposes a multiple source localization approach based on the maximum 

likelihood source localization method in the spherical harmonic domain, with implementation of 

an efficient alternating projection procedure based on sequential iterative search of signal source 

locations. The proposed method avoids the division of the spherical Bessel function, which makes 

it suitable for both the rigid-sphere and the open-sphere configurations. Simulation results show 

that the proposed method has a significant superiority over the commonly used methods, includ-

ing the MUSIC and the PWD methods. Experiments in a normal listening room validate the ef-

fectiveness of the proposed method. 
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1. Introduction 

Spherical microphone arrays have the benefit of a rotationally symmetric spatial directivity be-

cause of its three-dimension symmetric configuration. This makes spherical microphone arrays an 

appealing structure in many audio applications, among which the acoustic source localization, or the 

direction of arrival (DOA) estimation, plays an important role in speech enhancement [1], room im-

pulse response analysis [2], and room geometry inference [3].  

Various DOA estimation methods have been proposed, which can be generally classified as beam-

former-based [2]-[4] and subspace-based [5]-[6]. Beamformer-based methods, such as the plane-

wave decomposition (PWD) [4] and the minimum variance distortionless response (MVDR) [3], alt-

hough considered simple, suffer from spatial resolution limitations. Therefore, these methods are un-

able to localize spatially adjacent sources. Subspace-based methods, such as the multiple signal clas-

sification (MUSIC) [5], provide a high spatial resolution. However, for the subspace-based methods, 

the number of sources must be known a prior in order to obtain accurate results. Besides, subspace-

based methods suffer from severe performance degradation when the signal-to-noise (SNR) falls be-

low a certain threshold [7]. Therefore, subspace is not suitable for the environment with low SNR. 

Furthermore, in order to improve the robustness of DOA estimation of coherent sources, focusing 

matrices and frequency smoothing (FS) techniques have to be employed [6]. 

A maximum likelihood DOA estimation method in the spherical harmonic domain (SHMLE) is 

proposed in Ref. 8, which is an attractive alternative DOA estimation method in the spherical har-

monic domain circumventing the problems mentioned above. The SHMLE method provides higher 
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spatial resolution and stable localization performance in the low SNR environment. Besides, the wide-

band implementation of the SHMLE method is very straightforward.  

It should be noted that the SHMLE method proposed in Ref. 8 only considers the one source situ-

ation, and the performance in localizing multiple sources is yet to be analysed. In this paper, the 

SHMLE method is extended to estimate the DOA of multiple sources. Furthermore, the grid search 

method used in Ref. 8 is not suitable for the multiple source situation due to its high computational 

burden. To solve this problem, an efficient nonlinear optimization algorithm with implementation of 

the alternating projection method is introduced for the localization of multiple sources, which reduces 

the computational burden significantly. The performance of the proposed method is compared with 

the PWD and the MUSIC methods. Experiments using a 32-element spherical microphone array val-

idate the superiority of the proposed method. 

2. Method 

2.1 Signal model in the spherical harmonic domain 

The standard spherical coordinate system is utilized with r, θ and ϕ representing the radius, the 

elevation angle and the azimuth, respectively. The sound field is assumed to be composed of L plane 

waves with Ψl = (θl, ϕl) (l = 1, 2, …, L) being the DOA of the l-th plane wave and sl(k) being its 

amplitude, where k denotes the wave number. The Q element spherical microphone array is distrib-

uted uniformly on a sphere with a radius of a centred at the origin of the coordinate system, and Ωq = 

(θq, ϕq) is the angle position of the q-th microphone [9]. 

The sound pressure of the q-th microphone for the incident wave can be expressed as [10] 

            
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where kl = k(cosϕlsinθl, sinϕlsinθl, cosθl)
T and rq = a(cosϕqsinθq, sinϕqsinθq, cosθq)

T denote the wave 

vector of the plane wave and position of the q-th microphone in the Cartesian coordinate. Yn, m is the 

spherical harmonic of order n and degree m, N is the highest order number for the plane wave decom-

position and satisfies (N+1)2 < Q. The superscript (*) denotes complex conjugation. bn(k) is a function 

of array configuration [10]. Equation (1) can be expressed in matrix form as 
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where the superscript (T) denotes the transpose. 

In the presence of additive noise, the sound pressure at all Q microphones can be expressed as 

            H,k k k k p Ω Y Ω B Y Ψ s ν ,  (9) 

where 
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p(k,Ω) = [p(k,Ω1), p(k,Ω2), …, p(k,ΩQ)]T is the vector of the sound pressure of Q microphones, and 

(k) = [𝜈1(k), 𝜈2(k), …, 𝜈Q(k)]T is the additive sensor noise added to the system. The noise is assumed 

to be complex Gaussian, to be uncorrelated with the signal, to have zero mean, and for simplicity, to 
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be spatially white with a covariance matrix   2

Qk ν
R I , where 2

  is the unknown noise variance 

and IQ is the identity matrix of order Q×Q. 

For the uniformly spatial sampling configuration used in this letter, the following orthogonal rela-

tion holds (note that (N+1)2 ≤ Q) [8] 

     2

H

( +1)

4
NQ


Y Ω Y Ω I .  (11) 

The SH transform can be carried out by multiplying both sides of Eq. (9) from the left by 

 H4

Q


Y Ω , which yields 
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where pnm(k) is a vector containing (N+1)2 SH domain coefficients, i.e., 
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The second term on the right side of Eq. (12) is the noise expressed in the SH domain, i.e. 

     H4
=k k

Q


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and the covariance matrix 
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where E(∙) denotes the statistical expectation. Apparently, the noise model in the SH domain is also 

zero-mean complex Gaussian. 

2.2 Sound source localization in the spherical harmonic domain 

Define 
T

2, ,T T

n   Θ Ψ S  as the vector of all the unknown parameters, where 

   
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S s s

 

contains the amplitudes of the source signals with kmin and kmax 
repre-

senting the minimum and maximum wave numbers and satisfying ka ≤ N. Throughout this paper, Ψ, 

s and 2

v  are assumed to be deterministic and unknown, while the observed data pnm is considered 

random [11]. The likelihood function of pnm given Θ in the SH domain can be expressed as [8], [11] 
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where Vnm(k,Ψ) = B(k)YH(Ψ) and |∙| denotes the matrix determinant. The solution to Eq. (16) is given 

by [8] 

        
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k

k k
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where (∙)†denotes pseudo-inverse operation. 

Define the cost function as 

          
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then the wideband estimator can be described as 
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  ˆ arg max J
Ψ

Ψ Ψ .  (19) 

The narrowband SHMLE only requires the solution of Eq. (19) at a specific k, which can be de-

scribed as 

         †

10
ˆ arg max 20log , ,k k k k  nm nm nm nm

Ψ
Ψ p V Ψ V Ψ p   (20) 

Although it is simple, the narrowband solution suffers from performance degradation in the presence 

of coherent noise, e.g., the early reflections of the source signal [6]. Fortunately, the SHMLE has the 

remarkable benefit of easy implementation of wideband DOA as described in Eq. (17)-(19). This is 

superior over the existing methods, which usually require a quite cumbersome frequency smoothing 

(FS) technique to realize wideband DOA [6]. Compared with the maximum likelihood method pro-

posed in Ref. 12, the division of bn(k) is avoided as shown in Eqs. (17)-(20), which makes the method 

proposed in this paper a better choice for open-sphere arrays. 

2.3 DOA estimation of multiple sources 

For the one source situation, Eq. (19) can be solved using grid search method. However, for the 

multiple source case, an exhaustive multidimensional grid search is computationally prohibitive. A 

nonlinear optimization method is applied in this paper with implementation of the alternating projec-

tion method [13]. The alternating projection approach breaks the multidimensional parameter search 

into a sequence of single source parameter search and yields fast convergence rate. DOA estimation 

of two-sources is described as follows, and it can be easily extended to scenarios with more sources. 

Alternating Projection Algorithm in spherical harmonic domain: 

Step 1) Estimate the location of the stronger source s1 on a signal source grid 

 
   
1 1

1

0
arg max

s

s sJ


   .  (21) 

Step 2) Estimate the location of the weaker source s2 on a single source grid under the assumption 

of a two source model while keep the first source location estimate from step 1) constant: 

     2 1 2
2

0 0
arg max ,

s

s s sJ


    
 

.  (22) 

                 For i = 1, …, repeat step 3) and 4) until the localization results of s1 and s2 between adjacent 

iterations are smaller than 0.001°. 
Step 3) Using nonlinear optimization method to search the location of the first source while keeping 

the estimate of the second source location from the previous iteration constant: 

     1 1 2
1

1
arg max ,

s

i i

s s sJ




    
 

.  (23) 

Step 4) Using nonlinear optimization method to search the location of the second source while 

keeping the estimate of the first source location from step 3) constant: 

     2 1 2
2

arg max ,
s

i i

s s sJ


    
 

.  (24) 

In step 1) and 2), a rough grid search provides sufficient initial source location information. In step 

3) and 4), we use the Quasi-Newton (QN) method with Broyden-Fletcher-Goldfarb-Shanno algorithm 

[14], and the QN method is available in MATLAB as in the fminunc function. 

3. Simulation and experiments 

The Eigenmike® [15] microphone array model, as depicted in Fig. 1 with Q = 32 microphones 

arranged uniformly on a sphere with radius a = 4.2 cm, is used in both simulations and experiments. 

The performance of the wideband SHMLE method is compared with the commonly used FSPWD [6] 

and FSMUSIC [2] method with frequency range ka ∈ [2.5 3.5].  
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Figure 1: Eigenmike microphone and two sound sources. 

3.1 Anechoic simulation 

Figure 2 depicts the simulated wideband localization results of FSPWD, PSMUSIC and SHMLE. 

The sound source is placed at (θl, ϕl) = (90o, 180o). The source signal is white Gaussian noise sampled 

at fs = 16 kHz, and a frame of 1024 samples has been extracted from the recording. The SNR is set at 

20 dB. The DOA of the sound source is denoted by a solid black circle in all these figures. It can be 

seen that the peaks in the acoustic maps matches the DOA of the real sound sources. The spatial 

resolution of FSMUSIC and SHMLE are much better than that of FSPWD. 

 

 

Figure 2: Simulated wideband localization results of (a) FSPWD (b) FSMUSIC and (c) SHMLE. 

3.2 Localization performance versus SNR in a reverberation room 

Root mean squared error (RMSE) is often used to assess the performance of the localization results, 

which is defined as 

    
T

ˆ ˆRMSE E  Ψ Ψ Ψ Ψ .  (25) 

Figure 3 depicts the localization RMSE of FSPWD, PSMUSIC and SHMLE in a reverberant room. 

In this simulation, the room dimensions are 4×6×3 m3, the microphone array is located at [2.5, 3, 1.5] 

m and the speakers are placed 1.0 m away from the array center with 100 uniform distributed direc-

tions. The RMSE is averaged over 100 different trials. The room impulse responses between the 

sound sources and the microphones positioned on the rigid sphere are simulated using the method 

proposed in Ref. 16. The reverberation time is set at 0.3 s and the SNR varies from −10 dB to 20 dB. 

When the SNR is larger than 0 dB, the RMSE of these three methods are nearly the same. It can also 
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be seen that the performance of FSMUSHC breaks down when SNR is lower than −2 dB. At low 

SNR situation, the SHMLE has the best performance. 

 

 

Figure 3: Localization RMSE of (a) FSPWD (b) FSMUSIC and (c) SHMLE in a reverberant room. 

3.3 Multiple-source experiments in a listening room 

The experiments of DOA estimation of two sources are carried out in a listening room with back-

ground noise less than 30 dBA as depicted in Fig. 1. The room dimensions are 5×8×4 m3. The rever-

beration time is around 0.3 s. In the experiments, the microphone array is located at [2.5 3 1.5] m. 

Sound sources incident from eight different directions with a distance of 1.5 m, with elevation and 

azimuth angles shown in Table I. In each experiment, the sound sources consist of s1 and one of the 

other seven sources, and s1 is stronger than the other sources. 

Table 1: Eight sound sources incident direction 

Source s1 s2 s3 s4 

(θ, ϕ) (91.5°, 81.3°) (94.2°, 259.1°) (93.7°, 207.5°) (93.1°, 178.1°) 
Source s5 s6 s7 s8 

(θ, ϕ) (92.5°, 138.7°) (92.3°, 120.2°) (92.2°, 108.1°) (91.8°, 100.8°) 
 

Figure 4 depicts the localization results for two sources case using FSPWD and FSMUSIC meth-

ods. It can be seen that when the separation angle between the two sources is larger than 60°, both 

FSPWD and FSMUSIC can distinguish them as depicted in Fig 4(a) and (d). When the separation 

angle between sources is around 40°, the FSPWD can only locate the stronger source, while FSMU-

SIC can distinguish both sources, as depicted in Fig. 4(b) and (e). When the separation angle between 

sources is smaller than 20°, both methods can only locate the stronger source while fail to identify 

the weaker one, as depicted in Fig 4(c) and (f). It should be noted that Vnm(k,Ψ) in Eq. (17) contains 

the steering vector of all sources. Therefore, acoustic maps as depicted in Fig. (4) are not suitable for 

multiple sources SHMLE. 

Table 2 shows the RMSE of FSPWD, FSMUSIC and SHMLE for a10 s recorded data. It can be 

seen that the RMSE of these three method are close. For the stronger source, the RMSE of SHMLE 

is smaller than that of the FSPWD and FSMUSIC, which is mainly caused by that the grid search 

resolution of FSPWD and FSMUSIC is 1°. The FSPWD method can only locate the stronger sources 
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when the separation angle between the two sources is smaller than 60°. When the separation angle 

between the two sources is close to 20°, the FSMUSIC can only locate the stronger one, while the 

SHMLE can distinguish both sources. It is clear that the spatial resolution of the SHMLE is better 

than that of the FSPWD and FSMUSIC. 

 

 

Figure 4: Wideband localization results for two sources case. (a) FSPWD, s1 and s5, (b) FSPWD, s1 and s6, 

(c) FSPWD, s1 and s8, (d) FSMUSIC, s1 and s5, (e) FSMUSIC, s1 and s6, (f) FSMUSIC, s1 and s8. 

Table 2: RMSE of FSPWD, FSMUSIC and SHMLE for two sources case 

 RMSE of FSPWD RMSE of FSMUSIC RMSE of SHMLE 

strong weak strong weak strong weak 

s1 & s2 0.62° 1.88° 0.73° 1.19° 0.32° 1.66° 
s1 & s3 0.59° 1.52° 0.59° 0.85° 0.32° 0.91° 
s1 & s4 0.64° 1.03° 0.76° 0.89° 0.42° 0.90° 
s1 & s5 0.60° 1.20° 0.77° 0.71° 0.31° 0.79° 
s1 & s6 0.87° - 0.83° 0.78° 0.34° 1.05° 
s1 & s7 1.65° - 1.08° 1.65° 0.44° 1.76° 
s1 & s8 2.32° - 1.66° - 0.63° 1.54° 

 

4. Conclusion 

This paper proposes a maximum likelihood multiple source localization method in the spherical 

harmonic domain. The maximum likelihood strategy is used and the nonlinear optimization algorithm 

is applied to reduce the computational burden. The proposed method is suitable for both the open 

sphere and the rigid sphere array. From the simulations and experiments on a 32-microphone model, 

it can be seen that the proposed SHMLE method has very good spatial resolution and can distinguish 

two sources with less than 20° angle difference. Furthermore, the performance is stable in low SNR 

environment, circumventing the problem faced by the subspace-based method.   
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