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Prohibitive computational cost has become the bottleneck of large-scale finite element 

simulations, especially for structural-acoustic systems in which the total degrees of free-

dom (DOFs) is substantially enlarged due to the presence of the acoustic cavity. In this 

paper, the classical component mode synthesis (CMS) method, which has been widely 

adopted as a powerful model reduction technique in the structural dynamics, is extended 

to the two-field problems with the aim of improving the efficiency of dynamic simulation 

of large structural-acoustic systems. Specifically, the coupled system is decomposed into 

structure domain and fluid media domain, and each domain is further divided into several 

subdomains. In each subdomain, the fixed-interface CMS procedure is applied to trans-

form the interior DOFs to a set of much less modal DOFs while keeping the boundary 

DOFs as the original physical form, which steadily guarantees the velocity continuity on 

the coupling interface in the following assembling step. Particularly, because of the rep-

etition of structure units and acoustic cavities in the coupled system formulating one unit 

is needed only, which considerably lessens the modelling work and therefore renders a 

significantly reduced model. Finally, as an example to demonstrate its computational ef-

ficiency, the structural-acoustic CMS method is applied to calculate the interior sound 

pressure level of an air-filled long elbow pipe. It is shown that an obviously shorter time 

is required to complete a computation compared with that of a full model. The two-filed 

CMS method presented in this paper can be further employed to alleviate the computa-

tional overburden in the simulation-intensive tasks like structural-acoustic optimization 

or uncertainty quantification problems. 
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1. Introduction 

In the 1960s, the component mode synthesis method (CMS) was proposed by Hurty [1], and 

further developed by Craig and Bampton [2~3]. To accommodate to the limited computational re-

sources back then, this method seeks to divide a complex structure into several substructures, then 

cut down the number of degrees of freedom (DOFs) in each substructure by a modal superposition 

procedure, and finally assemble the substructures back to a complete but significantly reduced struc-

ture. As an efficient model reduction technique, the Craig-Bampton CMS method, together with its 

several variants [4~7], has been extensively employed in applications in which large-scale models or 

iterative computations are involved, like nonlinear dynamics [8], uncertainty quantifications [9] and 
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optimization problems [10]. Recently, a thorough review is made by Gruber et al. in [11], in which 

the general concept of order reduction is summarized after a performance evaluation of four popular 

substructuring methods. 

Another advantage of the CMS method is its independent and parallel manner to process each 

subsystem in a complex built-up system, which make it an appealing modelling framework in prob-

lems that include several segments or components, such as the multi-body dynamics and multi-phys-

ics problems. Among various multi-physics problems, the dynamic analysis of a large vibro-acoustic 

system remains as a challenge due to its inherent complexity and the corresponding computational 

difficulties. Traditional methods, like the finite element method and the boundary element method, 

are still the most widely used methods for complex dynamic analysis in industrial occasions, but these 

methods are only confined to low frequency and become quite cumbersome in higher frequency 

ranges due to the prohibitive amount of DOFs caused by mesh refinements; more recently, the wave-

based method proposed by Desmet delivers an improved computational accuracy of vibro-acoustic 

analysis and a finer adaptivity to irregular domains, but the exponential growth of the number of 

oscillating basis functions makes it become obviously inefficient in complex systems. 

The combination of order reduction ability and component-wise processing flexibility makes the 

CMS method a promising candidate for large vibro-acoustic system analysis. Actually, this has been 

noticed by several researchers and some preliminary studies have been done where only simple ge-

ometries and analytical modes are involved. Motivated by these practices, this paper investigates the 

application of vibro-acoustic CMS method in more complex systems in which the structural parts and 

acoustical cavities are modelled by the finite element method, to further validate the applicability of 

the proposed vibro-acoustic CMS method. 

2. Theoretical Formulation 

2.1 Problem description 

The internal vibro-acoustic problem which is considered in this paper is presented Fig. 1. The 

system consists of several identical subsystems and thus only one subsystem will be formulated. Let 

fV
 be the fluid domain, sV

 the structural domain, cS
 the fluid-structure coupling interface, and fS

 

the edge of structural domain which is subjected to an external distributed force denoted by f . It is 

assumed that there is no acoustical source in the fluid media. 

 

Fig. 1. Description of vibroacoustic problem. 

The equations describing the harmonic response at frequency  of structural domain can be 

written as 
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and the equations of the acoustic pressure in the fluid domain are 
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where s   is the structural density; f   and 0c   are the density of the fluid media and the speed of 

sound in it. 

A weak form formulation of the vibro-acoustic problem can be obtained on the basis of Eq. (1) 

and (2) as 
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for any admissible u  and p . 

By introducing the standard finite element procedure, Eq. (3) is discretized to 
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where sk , sm  are structural stiffness and mass matrices, fk  and fm  are respectively matrices corre-

sponding to the discretization of kinematic energy and compressional energy of acoustic fluid, and 

will be referred to as acoustical stiffness and mass matrices in the following; C  is the coupling matrix 

between structure and fluid media. Eq. (4) can be organized to a matrix form as 
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Through Eq. (5), we get the classical u p  formulation of a vibro-acoustic problem based on the 

finite element method. 

2.2 Vibro-acoustic component mode synthesis 

The Craig-Bampton component mode synthesis method will be extended to solve the vibro-

acoustic problems in this section. The primary step of this extension is to decompose the coupled 

system to a structural domain and an acoustical domain. To facilitate the re-assembly of the two 

domains at the final step, the DOFs on the coupling interface in each domain, i.e. the coupling nodal 

displacement and pressure variables denoted by subscript “b”, are chosen to be the boundary DOFs 

in the component mode synthesis context. Correspondingly, the left DOFs of both domains, which 

are denoted by subscript “i”, will be the inner DOFs. Therefore, Eq. (5) can be rewritten as 
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A reduction basis can be constructed based on the classical CMS method as 
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where 
s

i  is the retained part of the fixed-interface mode shape matrix of structure derived by solving 

the following eigenvalue problem 
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s

c  is the constraint mode shape matrix derived by successively imposing a unit displacement on each 

boundary DOF of the structure, thus leads to 
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The fixed-interface mode shape matrix and constraint mode shape matrix of the fluid media, i.e. 
f

i  and 
f

c , can be defined likewise as Eq. (8) and (9). 

Substituting Eq. (7) into Eq. (6) and pre-multiply by 
TT , the reduced equation of a vibro-acous-

tic system is obtained 

 

 

 2

0

0 0 0 0 0

0 0 0 0

0 0 0 0 0
0

0 0 0 0
0

T
s s

f s s s
i i

ii ii ib i

f s s T
s s

bb bb bi bb b
c i

f f f f

ii ii ib i

f T f f

bb bb bi bb b

fk m m q

k C m m u f

k m m q

k C m m p







 
                                

                       

 (10) 

The sub-matrices of the structure part in Eq. (10) are defined as 
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The sub-matrices of the fluid part in Eq. (10) can be obtained by substituting the superscript “s” 

in Eq. (11) by “f”. 

3. Numerical Results and Discussion 

An elbow tube is considered in this section as a numerical example to evaluate the computational 

performance of the proposed method. The geometrical dimensions of this tube is depicted in Fig. 2. 

The tube is made of aluminium with the Young’s modulus 71E GPa , Poisson’s ratio 0.33   and 

density 
32700s kg m 

. The interior fluid media of this tube is air with density 
31.225f kg m 

 

and speed of sound 0 340c m s
. The left end of the tube is clamped and a unit point force is applied 

on the surface of the tube as illustrated in Fig. 2. Both the structure and the fluid media are modelled 

by 8-node hexahedron elements. The whole vibro-acoustic system is divided to five subsystems in 

such a manner that four subsystems are identical. Therefore, only the first and fourth subsystems need 

to be actually modelled in the vibro-acoustic CMS procedure. Total number of DOFs of the full model 

and the reduced model is shown in Table 1. It should be pointed out that the rule of thumb, which 
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requires the modes whose frequencies are within 2.5 times of the highest interested frequency should 

be kept, is used for modal truncation of the structure and fluid media. 

 

Fig. 2. Dimensions of the air-filled elbow tube. 

Table 1 Total number of DOFs of the full model and the reduced model 

 inner DOFs boundary DOFs total DOF 

full model 15316 1296 16612 

reduced model 100 1296 1396 

It can be seen from Table 1 that although boundary DOFs remain unaltered, the total DOF of 

reduced model is still obviously decreased by 91.6%, rendering a significantly shortened CPU time 

to conduct a dynamic analysis. To further evaluate the computational accuracy of the proposed 

method, the displacement response of point A on the structure and the sound pressure level response 

of point B in the fluid media are shown in Fig. 3, and are compared with the corresponding results 

delivered by the full model. 

 

Fig. 2. Comparison of vibro-acoustic responses between full model and reduced model: (a) displace-

ment response of point A; (b) sound pressure level response of point B. 
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From Fig. 2 a consistent agreement of present results and the referential full-model results is seen. 

Therefore, the vibro-acoustic CMS method is proven to be adequately accurate for dynamic simula-

tions. 

4. Conclusions 

It is shown in this paper that the analysis of dynamic characteristics for a complex vibro-acoustic 

system can be carried out mainly at the component level and then assembled to form a complete 

model with the only requirement of verification, without going through the conventional extensive 

computations in which enormous degrees of freedom are involved. A number of steps in the theoret-

ical modelling and numerical implementation have been explained, including component-wise modal 

transformation, subsystem re-assembly, and results verification. Overall, the numerical examples 

have demonstrated the effectiveness of the proposed method. 
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