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Impact induced large amplitude (geometrically non-linear) vibrations of doubly curved shallow 

viscoelastic shells with rectangular base are investigated for the case when the shear operator is 

governed by the fractional derivative Kelvin-Voigt model in conjunction with the time-

independent coefficient of volume extension-compression, what is verified by experimental da-

ta. It has been shown that such a model could describe the behaviour of so-called auxetic mate-

rials with negative Poisson's ratios. It is assumed that the shell is simply supported and partial 

differential equations are obtained in terms of shell's transverse displacement and Airy's stress 

function. The equations of motion are reduced to a set of infinite nonlinear ordinary differential 

equations of the second order in time and with cubic and quadratic nonlinearities in terms of the 

generalized displacements. Assuming that only two natural modes of vibrations dominate during 

the process of impact, the method of multiple time scales in conjunction with the expansion of 

the fractional derivative in terms of a small parameter has been utilized for solving nonlinear 

governing equations of motion. 
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1. Introduction 

A review of the literature devoted to dynamic behavior of curved panels and shells could be 

found in [1,2]. Nonlinear vibrations of doubly curved shallow shells induced by the low-velocity 

impact by an elastic sphere were investigated in [3,4]. The dynamic response of an initially flat vis-

coelastic membrane was considered in [5] utilyzing the fractional derivative Kelvin-Voigt model 

and time-independent Poisson’s ratio what is in conflict with experimental data. 

In spite of the fact that the impact theory is substantially developed, there is a limited number of 

papers devoted to the problem of impact over geometrically nonlinear viscoelastic shells, the review 

of which could be found in [3,4].  

In the present paper, a new approach has been proposed for the analysis of the impact 

interactions of nonlinear viscoelastic doubly curved shallow shells with rectangular base under the 

low-velocity impact by an elastic sphere. To describe the damping features of the shell, the shear 

operator is preassigned in terms of the fractional derivative Kelvin-Voigt model 
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where 0  is the relaxed shear modulus, 
  is the retardation time, (0 1)    is the fractional 

parameter, 0D

  is the Riemann-Liouville fractional derivative [6,7] 
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(1 )   is the Gamma function, and ( )x t  is an arbitrary function. 

The bulk operator is assumed to be time-independent 0 constK K  , i.e, 
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It has been shown that such a model could describe the behaviour of so-called auxetic materials 

with negative Poisson's ratios [8].  

Let us write Poisson’s operator   in the form [8] 

 *0
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1 ( )
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
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where 
* ( )t  is the Rabotnov dimensionless fractional operator defined as follows [6] 
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It is assumed that the shell is simply supported and partial differential equations are obtained in 

terms of shell's transverse displacement and Airy's stress function. The equations of motion are re-

duced to a set of infinite nonlinear ordinary differential equations of the second order in time and 

with cubic and quadratic nonlinearities in terms of the generalized displacements. Assuming that 

only two natural modes of vibrations dominate during the process of impact and applying the 

method of multiple time scales, the set of recurrence equations of various orders is obtained. 

 

2. Problem formulation and governing equations 

Assume that an elastic or rigid sphere of mass M  moves along the z -axis towards thin-walled 

doubly curved shell with thickness h , curvilinear lengths a  and b , principle curvatures xk  and yk  

and rectangular base, as shown in Fig. 1. Impact occurs at the moment = 0t  with the low velocity 

0V  at the point N  with Cartesian coordinates 0 0,x y , where   is a small dimensionless parameter. 

According to the Donnell-Mushtari nonlinear shallow shell theory, the equations of motion could 

be obtained in terms of lateral deflection w  and Airy's stress function   [9]  
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where 
3

2
=

12(1 )

Eh
D


 is the cylindrical rigidity operator,   is the density, E  and   are Young’s 

operator and Poisson's operator, respectively, t  is time, 0 0= ( ) ( ) ( )F P t x x y y    is the contact 

force, ( )P t  is yet unknown function,   is the Dirac delta function, x  and y  are Cartesian 

coordinates, overdots denote time-derivatives, ( , )x y  is the stress function which is the potential 

of the in-plane force resultants  
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The equation of motion of the sphere is written as   
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 Figure 1: Geometry of a doubly curved                               Figure 2: The contour of integration  

                            shallow shell 

 

                                                           = ( )M z P t   (9) 

subjected to the initial conditions  

 0(0) = 0, (0) = ,z z V   (10) 

 where ( )z t  is the displacement of the sphere, in so doing  

 0 0( ) = ( , , ).z t w x y t   (11) 

Considering a simply supported shell with movable edges, the following conditions should be 

imposed at each edge: at = 0,x a   

 
0

= 0, = 0, = 0, = 0,
b

xy x xw N dy N M   (12) 

and at = 0,y b   

 
0

= 0, = 0, = 0, = 0,
a

xy y yw N dx N M   (13) 

 where xM  and yM  are the moment resultants. 

The suitable trial function that satisfies the geometric boundary conditions is  

 
=1 =1

( , , ) = ( ) sin sin ,
p q
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where p  and q  are the number of half-waves in x  and y  directions, respectively, and ( )pq t  are 

the generalized coordinates. Moreover, p  and q  are integers indicating the number of terms in the 

expansion. 

Substituting (14) in (11) and using (9), we obtain  

 0 0
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p q

pq
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In order to find the solution of the set of Eqs. (6) and (7), it is necessary first to obtain the 

solution of Eq. (7). For this purpose, let us substitute (14) in the right-hand side of Eq. (7) and seek 

the solution of the equation obtained in the form  

 
=1 =1

( , , ) = ( )sin sin ,
m n

mn

m n

m x n y
x y t A t
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 

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 where ( )mnA t  are yet unknown functions. 

Substituting (14) and (16) in Eq. (7) and using the orthogonality conditions of sines within the 

segments 0 x a   and 0 y b  , we have  
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 where coefficients 
mnK  and pqklmnB  are presented in [3,4]. 

Substituting then (14)-(17) in Eq. (6), using the orthogonality condition of sines within the 

segments 0 x a   and 0 y b   and multiplying equation by operator 
1J E  , we obtain an 

infinite set of coupled nonlinear ordinary differential equations for defining the generalized 

coordinates  
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where 
mn  is the viscoelastic operator corresponding to the natural frequency of the mn th mode of 

the shell vibration defined as  
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Let us find the operator 2 1(1 )  , which with due account for (4) could be presented in the 

following form: 
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Now let us calculate the operator inverse to the operator (3)  
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Then we could rewrite operator 
mn  considering (20), that is 
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The last term in each equation from (18) describes the influence of the coupled impact 

interaction of the target with the impactor of the mass M  applied at the point with the coordinates 

0x , 
0y . 

It is known [10] that during nonstationary excitation of thin bodies not all possible modes of 

vibration would be excited. Moreover, the modes which are strongly coupled by any of the so-

called internal resonance conditions are initiated and dominate in the process of vibration, in so 

doing the types of modes to be excited are dependent on the character of the external excitation. 

Thus, in order to study the additional nonlinear phenomenon induced by the coupled impact 

interaction due to equation (18), we suppose that only two natural modes of vibrations are excited 

during the process of impact, namely,   and  , in so doing each type of impact subjection 

should be considered separately. 

3. Method of solution  

Let us consider first the case of strong action of the impact force upon a target. Then the set of 

Eqs (18) is reduced to the following two nonlinear differential equations:  
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In order to solve a set of two nonlinear equations (23) и (24), we apply the method of multiple 

time scales [11] via the following expansions:  

 
1 2 2 3 3

0 1 2 0 1 2 0 1 2( ) = ( , , ) ( , , ) ( , , ),ij ij ij ijt X T T T X T T T X T T T       (25) 

where =ij   or  , = n

nT t  are new independent variables, among them: 0 =T t  is a fast scale 

characterizing motions with the natural frequencies, and 1 =T t  and 
2

2 =T t  are slow scales 

characterizing the modulation of the amplitudes and phases of the modes with nonlinearity. 

Recall that the first and the second time derivatives are defined, respectively, as follows 
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2

0 0 2= ...,
d

D D D
dt

      (26) 

  
2

2 2 2

0 0 1 1 0 22
= 2 2 ,

d
D D D D D D

dt
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where = /n n n

i iD T   ( = 1,2, = 0,1n i ). 

The fractional derivative is interpreted as the fractional power of the differential operator [12] 

 1

0 0 1= ...,
d
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  (28) 

Let us note that [7] 
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  

   
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But in the present case the process of vibrations starts at the time 0t   . Thus we should adopt 

the fractional derivative in the following form: 
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t
d t dt

D
dt t t






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Fractional derivatives (29) and (30) act differently on the function 
te  , which is utilized in fur-

ther treatment, i.e. 

 
,t tD e e    
  (31) 

and  

 0
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

  
 .  (32) 

However, as it has been shown in [12], if in the method of multiple time scales only the zero and 

first order approximations are considered, then the second term in (32) could be neglected. 

Now let us expand the Rabotnov dimensionless fractional operator (5) in a Taylor series. As a re-

sult we have 

 

1
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1 2 1
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1
( ) (1 ) 1 ( )
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(1 ) (1 ) ...

D D D D
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  

     

   
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 


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  (33) 

The same procedure that has been used above for calculating 
0

tD e 


can be utilized for calculat-

ing the expression 

 
*

0

1
( ) ( )

1

t tf t e e
D

  

  


 

 


.  (34) 

For this purpose let us apply the Laplace transform to Eq. (34) 

 * 1 1
( ) ( )

[1 ( ) ] ( )

tf t e
p p

 

 


 
  

 
,  (35) 

where an overbar denotes the Laplace transform,  and p  is the Laplace variable.  

Passing from the image to the original in Eq. (35), we have 

 * 1 1 1 1
( ) ( ) ( )

2 [1 ( ) ] ( ) 2

c i c i

t pt pt

c i c i

f t e e dp f p e dp
i p p i

 

 


   

   

   

  
   .  (36) 

Using the contour of integration shown in Fig. 2 we could reduce Eq. (36) to the following form: 
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0

1
( ) [ ( ) ( )] [ ( ) ]

2
Rp ti i st

R

R

f t f se f se e ds f p e
i

 





    .  (37) 

Considering (35) in (37), we find 

 
0

1 sin
( )

1 ( ) [( ) ( ) 2cos ]( )

ut
t e du

f t e
u u u



  



     

 


 

    ,  (38) 

where 

 
1 1

1 ( ) 1

t te e
D

 

    


 

.  (39) 

The second term in (38) could be neglected, if in the method of multiple time scales jnly the zero 

and first order approximation are considered. 

Substituting relationships (25)-(33) in (23) and (24), after equating the coefficients at like powers 

of   to zero, we are led to a set of recurrence equations to various orders: 

to order    

 2 1 2 1 2 1

11 0 0 1 12 0 0 2 1 1 = 0,p D J X p D J X X    (40) 

 2 1 2 1 2 1

21 0 0 1 22 0 0 2 2 2 = 0;p D J X p D J X X    (41) 

 to order 
2   

 

2 2 2 2 2 2 1 1

11 0 0 1 12 0 0 2 1 1 11 0 1 0 1 12 0 1 0 2

1 2 1 2 1 1 1 1 2 1 2 1 1

11 0 1 11 0 1 12 0 2 12 0 1 1 13 1 14 2 15 1 2

= 2 2

( ) ( ) ( ) ,

p D J X p D J X X p D D J X p D D J X

I D D p D X p D X I D D X p X p X p X X   

   

     
  (42) 

 

2 2 2 2 2 2 1 1

21 0 0 1 22 0 0 2 2 2 21 0 1 0 1 22 0 1 0 2

1 2 1 2 1 1 1 1 2 1 2 1 1

11 0 1 21 0 1 22 0 2 22 0 1 2 23 1 24 2 25 1 2

= 2 2

( ) ( ) ( ) ,

p D J X p D J X X p D D J X p D D J X

I D D p D X p D X I D D X p X p X p X X   

   

     
  (43) 

 to order 
3   

 
   

2 3 2 3 2 3 2 2

11 0 0 1 12 0 0 2 1 1 11 0 1 0 1 12 0 1 0 2

2 1 2 1 1 2 2 1

11 1 0 2 0 1 12 1 0 2 0 2 11 11 0 1 0 1 0 1 1

1 2 2 1 1 2 1 2

12 11 0 1 0 2 0 1 2 12 0 1 1 13 1 1 14

= 2 2

2 2 ( 2 )

( 2 ) 2 2

p D J X p D J X X p D D J X p D D J X

p D D D J X p D D D J X p I D D D X D D X

p I D D D X D D X I D D X p X X p



 



 



 

   

     

    

     

1 2

2 2

3 2
1 2 2 1 1 1 1

15 1 2 1 2 16 1 17 1 2 ,

X X

p X X X X p X p X X   

  (44) 

 
   

2 3 2 3 2 3 2 2

21 0 0 1 22 0 0 2 2 2 21 0 1 0 1 22 0 1 0 2

2 1 2 1 1 2 2 1

21 1 0 2 0 1 22 1 0 2 0 2 21 11 0 1 0 1 0 1 1

1 2 2 1 1 2 1 2

22 11 0 1 0 2 0 1 2 22 0 1 2 23 2 2 24

= 2 2

2 2 ( 2 )

( 2 ) 2 2

p D J X p D J X X p D D J X p D D J X

p D D D J X p D D D J X p I D D D X D D X

p I D D D X D D X I D D X p X X p



 



 



 

   

     

    

     

1 2

1 1

3 2
1 2 2 1 1 1 1

25 1 2 1 2 26 2 27 1 2 ,

X X

p X X X X p X p X X   

  (45) 

where for simplicity is it denoted 1 1

1 =X X , 1 1

2 =X X  , 2 2

1 =X X  , 2 2

2 =X X  , 1 =   , and 

2 =    and 

10
0 0

0 0

1 3
1 (1 ) ;

9

K
J D

K

 




 
   

 
 2

11 0

0

1
(1 ) ;

3
I D  

  


    

             

            2

12 11 21 0(1 )I d t d At D At   

  

    . 
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4. Conclusion 

Large amplitude (geometrically non-linear) vibrations of doubly curved shallow viscoelastic 

shells with rectangular base were investigated for the case when the shear operator is governed by 

the fractional derivative Kelvin-Voigt model in conjunction with the time-independent coefficient 

of volume extension-compression, what is verified by experimental data. It has been shown that 

such a model could describe the behaviour of so-called auxetic materials with negative Poisson's 

ratios. Due to their unique properties auxetics have potentially important applications in the nearest 

future. Auxetics can be advantageously used in the development of hydrophones and other sensors; 

for fibre reinforcement in composites; shock and sound absorbers; fasteners and rivets; air filters; 

for thermal protection in aerospace; for the manufacture of defence protective clothing [13]. 

 It has been assumed that the shell is simply supported and partial differential equations have 

been obtained in terms of shell's transverse displacement and Airy's stress function, in so doing the 

local bearing of the shell and impactor's materials was neglected with respect to the shell deflection 

in the contact region. The governing set of nonlinear differential equations has been obtained using 

the method of multiple time scales. 
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