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l - Introduction

Statistical energy analysis (SEA) methods are often used in the calculation of
pave: flows between coupled structuralelememsand the vibration levels of each

element of a system. The method-gives only the relationships betueen average
quantities and the results are usually unreliable in the low frequency range

where model densities are low; a deterministic solution is therefore pre—
ferred although the calculations are more complicated if not intractable.

This paper describes an approximate method used to calculate the bending

vibrations of a combination of rectangular thin plates with elastically
supported and damped non—coupled edges subjected to point sinusoidal excitat—

ions. The method has clear applications in the prediction and control of

machine induced vibrations in buildings or in any case where low frequency

vibration sources are coupled to a system of beams and plates. The method

is similar to that used for calculating the bending vibrations ofa single

rectangular plate where the displacement amplitude function is expressed as a

linear combination of coordinate functions and is extended to the case of
combination of plates. The displacement amplitude function vector ofthe

global system of plates is also expressed as a linear combination of coordinate

function vectors which satisfy all the boundary conditions of the global system.

“filo examples, an L—combination and a series of T—combinations of rectangular

thin plates, are discussed and the input and transfer mobilities derived. The
frequency response of combinations of concrete plates is calculated in the

frequency range below 500 Hz, and the effect of material damping and edge

losses is investigated. '

2. lrcombination of two rectangular plates
2.]. Differential equations

The governing differential

equations of bending vibration

of the L-combination of rec-
tangular thin plates (as shovn
in Fig.1) can be written as

Fig.1.
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11-, {;,D.:(-D;("JQ)) are respectively the density, thickness and complex

bending stiffness of the 1th place, may,“ and may.“ are displacement
function and pressure function vectors, 1.1.1], ,5.“ gull,“

If the excitations are sinusoidal i.e. “

f,lx.7,t) = (3,0,1) eiwt _ (2)

frag.“ (2,1).” Q‘UIJ)

where u is the radian frequency and a. (3.!) is the pressure amplitude

function vector applied to the global system, then equation (1) reduces to

[A o /W.tv.;) _ 0,014) (3)

0 £2 kWJU-J) mm) W'w’,

where z; E D; mud-’72“; . i ="1 and (MU'J’
is the bending displacement amplitude function Vector.

2.2 Boundary conditions

The boundary conditions can be written as:

Ony=o, z=o edge;

W, 1 Ike ) a o

1,. Mr, M. *" 3W:I ( r». I = 5. [—3" M a m 27 7.9

On -7=£. J=c yep; ' (9)

W.zx,u a o

y 3W. 3W) ' an;n. (— w.— =- 5 (_'
3" 331’“ n, 31);“.

0.. ’l - A, 1- 0 fl‘ :

W.(A.; = :1

NW 3‘” "
‘W—J H —' --5+(-a-l-') mh .3;- an. I 9x pa.
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'a. 7=0,}-o “91-;

W7(a.;)=9; M(;;vl=a
AW: (u,;)| 351,312,” _

a: 2:0 + a; 5:9 ‘0 » (e;

aw. W.- _ * L”: fl’x‘
Bflfififia—fi )F, " 7’1 3y “5 a}: ) :9

On u.=o. 9:0 09‘: .
, 3W J’W 1| 3W.

W1(0.})=°. 175% 3?:*’ia—J.I),.p=3u =_.,

On 1:11, 7:], 14,1; ‘ (7)
_. _ ,. aw 3% _ 4. AW. -
"MIN-0: “2 (3731": y wold? 3.,

On 71:94:; mil/4;

   

Wx(1.c)=o. W
p; J‘W- fl D‘M r 3 . mf- l ‘ -.= _

3r 9’ 2;:5 2(3’ i=c

o u
'i’, I; , 5;. I :5 are respectively the Polsson's ratio and the boundary

complex rotational stiffnesses (as shown ln Fig.1) of the lth plate, 1 = 1,2.

\ 2.3 coordlnate function vectors

let Kul , K111 , it“ h): !:}1 he the (th elgen wave numbers and elgen
functions of the L—comblnatlon of beams of unit wldth perpendicular to the

coupled edge (the shaded areas in Fig.1) which satisfy the boundary conditions

, corresponding to equations (5). (6) and (8).
A

Let k, ,.., In». , E,,,.lfl, §;,,.l}) be respectively the mth elqen Have
number , eigen functions of the single beams of unit uldrh parallel to the

coupled edge, lying in Plate 1 and Plate II and satisfying the boundary con-

ditions corresponding to equations (4) and (7). For simplicity, assume '
guf/ pf= 3/7: and gif/ zfnjj/D,’ then the 1740 single beams have same
elgen wave numbers and elgen functions.

It," = k1,. =19- _ §,,,,¢;)— f1}. 1;)=§,.. 1;), m -L

The (1, m,n)& coordinate function vector for the global system can be written
as: .

(Whoa)! ) {In}, ('1 I,_(;) )

w“: (’4) 2,. 1}) I131!» 1”
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satisfying the boundary conditions on the non—coupled edges. In order to

satisfy the boundary conditions on the coupled edge._ in = n, and the coordinate

function vector (9) reduces to:

(W'thny) )___ (Infinfysq) ‘ I - (10)

916.2 (3,1) §,.(;)I,}1(p .
2.4 Approximate solution

The approximate solution to equation (3) can be written as:

WAX/3))_ i. M I me u_ A ( I“ I" 3' (11)
(9mm) .4; 3:, 1" §,.€})£,}gt})

Substituting (11) into (3) yields.

.5, o ) —. (2,1(t)§,_l’u) =(Qu,,,) -c',u,;)) (12,

(a I).- g‘l 2; gar- ‘7) 29(0) A!“ G’s-{av}, ’ (5117!”

where (5- ('1’) ) is an error function vector.

EH14) -
Multiplying both sides of equation (12) by the operator vector Vt".

v p 1., 'v c 7b 3 “v

Kr” 5(1' {farcfl'é’s’qx “xiii-J; J; 2/1; (5’1;;1'(})( )‘£;‘¢})

.v i
where EH5 frhrflfyz‘ are respectively the complex conjugate functions of

[by] §’_, ’; l . an applying Galerkin's orthogonality condition for the

global system” ‘ . 5-“4’ up yield:
L _,., in tugq) I

Z L 1-(iflm‘,z.m)A,m =5)”. (13)
1:1 an! _

where TLE‘thI. h)=-|/l',..- '(‘t’ 0 )(rul (U f3,” '1‘)
I“: x _ 0 I: Ezmqixflufl

if a emergzmmgwum', ,f'lnghlzflll guy-711$”; m)

= :1? e r .1, .[1,: ,'.(G.u.;n_ g _ ._ ~ __» __

’" V‘” rem-p "M‘ ‘1m‘ 47““? 4. J. {’WJSM’Q‘J’A’; “5’
i'= I. -~.L,- w, ,, M

Equation (13) can be written in matrix form

T(l.l,I,I)-" T(I¢I.L.H) 5,, F“

.' . -' ,__. : (16)

T(L,M.:,:) T:‘L,M,L,m) 21,-” 11M .

a )and being generalised coordinate and generalised force vectors.

Rut _ Fm
Ann's can be solved from equation (16) And by substituting A,“ '5 into equation

(ii) one gets the solution to'equation (3). The complex eigen frequencies and

eigen vectors of the global system can also be calculated from equation (16)

letting the generalized force vector equal to zero.
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Le:($)be the invexsl matrix of the (T) matrix in equation (16) and
S(!,m, iam') be the terms of{S)matrix, then equation (16) can be written as:

(2;)=m;) * I
2.5 Response to point excitation

MIf a point sinusoidal exciting force F, 6
first plane, then

(quay): Fth-vxrfllyb)
an”) . o

F inn: 1!: . v; _ f: I I .‘
——.> 5;. =Vm.(fi r I7f)grflaud-1’19.“th

is applied at P( in 7/. ) in the

o 1’

£'= I. ‘--,L ,- m'- i,
; _'M _ 3 ~

a. A,“ .= Fr, 2 L 511‘", zf-n') 2,,‘N1/H f”: ’if’
['11 ~‘=‘

' . 1 “I —, (If .'I=,>(wrnx.gl)afi Z 5U.Miliwmulrwgfiw)(1. . x a, I; m)
1‘1"“ I,n,¢;,..‘ %‘~(’J%}1(})I.

If a receiving poxnt R is at R(]‘l;n)1.n the second plane, then the displacement
amplitude at R

W1 Uméfl'FpZ SH.M.(Z'm'Ifmn(YpEwa/Jgn‘h)E1}:‘37!) ‘19)
1,n.l,'~n'

The transfer mummy from P m R

M"-'r.rr:1.7a;:.)= Fr
N ~ _ (20flung! su,.¢:..-Jzu,(x,)£,_.1;wfghmmlh) 2’

I'll/'3

353

 



Proceedings of The Institute of Acoustics

F'LEXURAL VIBRATIN TRANSMISSIOI AT JUNCTIONS

If R coincides with P, then the input mobility at P

M (I. 1,,7PJ-}‘A.;‘Z[ 511, m. l'. m‘)§jurmfjin.(g,l%w (flying?)
1"! I“. -(21)

= 1/Z(Mp. m
where Z (1.1,,7r) is the input impedance at P (1?, 7r ) in plane I.

3. A series of T-combination of planes

1 The bending vibration of

11.17;. me global system of a series
/ of T-combinationSOE n planes

o as shown in Fig.2 can also

‘?"' L1, be solved in the Same way as
/

m

discussed in Section 2 for the L-combination. The coordinate functibn vectors

are organized from the eigen modes of the series of T-combinations of beams of

unit width and the eigen modes of single beams parallel to the coupled edges

(the shaded areas in Fig,2.).

ti. Frequency response curves due to point excitation

The frequency response curves of an L-comblnation of concrete plates (as shown

in Fig.1) due to unit force excitation at (3.1) in Plate l_are given in F194]

(a) , (b) I (c) A The constants of platejand boundary rotational stiffnesses are

(all in 5.1. Units):

u=r. 1. =., c=3,- 4,, f“: 044'— a’,:.auo‘(..,'zl.-

M. m,-D—, a E; =LaJx/o‘“(I-jz); Q= l7" rzlmy‘}
I' 
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all boundary wcauonal Stiffnesses _=1m("'}- "2). Receiving points are n
(2, 2.5) in plate 1. 52(23) and as (0.15. 0.15) in Plate 11.

The frequency response curves of a series of T-cambinations (as shown in Fig.2)
cf five concrete plates due to unit force excitation at (2.1, 1.5) in Plate I
are given in Fig.4 (a), (b) , (c). The constants of platesand bbundary rotational

stiffnesses are (all in 5.1. units): '

1

44:10.11]: 3.5, u,=4.1', «=44. (4:11: 5:4»,-

{/= {x=‘)= It: 01; {. =~°7ii

pf: y: : ,7.’ = 1:; = 12 .mtuvui p: = inhm‘Injlcz):

  

   

K, _ _ . _ .
f7 = — — —— = — = [duo “(I-1(7), I“? = 10¢ 1/0 ‘(Ij NZ);

I 9

I

3'": @804”: 1": j” 3 z'mrlnf-7). 3: =ols.‘mr(nfflzl)l_

.1

3.1,: 3;. 3 3]:=3;':= "I‘IDIU'JI’IJ, ll: -=..j-}’i. IDr('I?!‘/'-‘Z);

a -)3'; .=J-1:=3H_ =5” =;,2./erng'7). 3:6 =a.m.m’m,‘nz),.

(7= I7:_ 5‘2, NZ). Receiving points 50.1.3.2) R3(2.5.l.8) and
R5(1.B 2.3) an: in plale 11. plate 111 and plate V respectively.

 



(b)? = 5‘

Response at R5

‘7“ =
2 \
.1 .'

T

—> Fwy—e“, ru—rm 4,;

response at. Rl

' response at R2

“"""" response at R3
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