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With the development of heavy industry, elastic coupling plays a more and more important role 

in internal drive system. The performances of elastic coupling may result in different working 

condition and efficiency. It will get benefit from studies on coupling dynamics. Applying the re-

sults in engineering to solve shear and invalidation because of vibration to make the shafting 

working more efficient. Researches on coupling mainly concentrate on the bending vibration 

and torsional vibration. The previous researches show that there is a coupling relationship be-

tween the bending vibration and torsional vibration of the shafting system. It is complicated to 

analyze the model because of the nonlinear vibration mechanics. In order to reduce the diffi-

culty of problem analysis, a simple basic model is usually chosenfor analysis. Based on the 

analysis of mechanics and the basic theory of elastic mechanics, the system composed of disk 

and coupling is analyzed. The vibration model of the disc-coupling system is established by La-

grangian equation and vibrational principle, and the differential equations of vibration of the 

system is deduced. The vibration differential equations are solved by MATLAB, and the inter-

nal coupling relation of the vibration of the disc - coupling-shaft system is analyzed in this paper. 
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1. Introduction: 

In the engineering practice, the rotating system is dependent on the flexible coupling in most 

large mechanical equipment. The performance of elastic coupling determines the running efficiency 

of the machine. The research on the dynamic characteristics of the elastic coupling can help to re-

duce the fracture and failure of the driving shaft caused by the vibration in the engineering applica-

tion. 

The dynamic characteristics of the coupling are studied by studying the bending vibration and 

torsional vibration of the shaft coupling system[1]. The results show that there is a coupling rela-

tionship between bending vibration and torsional vibration[2], and the simplest coupling model is 

the Jeffcott Rotor Model. As the bending-torsional coupling vibration involves nonlinear vibration, 

its variation law and mathematical analysis model are more complex and difficult[3]. In order to 

reduce the difficulty of these problem, usually a simple basic model is chosen for analysis[4]. Based 

on the analysis of the basic theories of mechanics and elastic mechanics, the system composed of 

disk and coupling was analyzed in this paper considering disc eccentricity and distortion of cou-

pling. The vibration model of the disc - coupling system is established by Lagrangian equation and 

variational principle[5]. The vibration differential equations of the system are deduced and solved 

by MATLAB, and the internal coupling relation of the vibration of the disc - coupling system is 

analyzed in this paper. 
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2. Establishment of vibration differential equations  

2.1 The establishment of disc - coupling system model 

The simplified model of the disc - coupling system is established by analyzing the elastic cou-

plings in the engineering practice, as shown in Fig. 1: 

 

 

 

                                                                              

                                                                            c  

                                                                           e  

 

                                                                        1o  

                                                                             

 

 

Figure 1:simplified model of the disc - coupling system 

In the Fig.1, the rotor is simplified to a single disc whose mass is cm , and the coupling is simpli-

fied as a mass- block whose mass is Am . The connecting shaft is flexible and isotropic with no mass. 

The coordinates of the single disk are shown as below: 

 

 

Figure 2:single disk model 

In the Fig.2, c  is the center mass of the disk, 1o  is the centroid of the disk , o is the center of the 

vortex motion,  is the angle that the disc has turned and   is the disc torsion angle. e is the eccen-

tricity of the center of mass to the disc. u is the distance from the center of the disc to the origin, and 

δu is the initial displacement caused by the gravity of the disc. According to figure.2, the coordi-

nates of the center point can be gotten as follows: 

 sinsin)( euuyc                                                         (1) 

 coscos)( euuxc                                                        (2) 

The coordinates of the coupling are shown below: 
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Figure 3:the coordinates of the coupling  

In the Fig.3, o is the vortex center, v  is the distance from the coupling to the origin, δv is the ini-

tial displacement caused by the gravity of the coupling.  is the torsion angle of the coupling. Ac-

cording to the coordinate system, the position coordinates of the coupling can be gotten as follows: 

 cos)( vvxA                                                                   (3) 

 sin)( vvyA                                                                    (4) 

2.2 Kinetic energy of the system 

According to the coordinate system established above, the velocity of the disk center of mass and 

the coupling is expressed by generalized coordinates, in which the velocity of the disk center of 

mass are:  
   )sin()sin()()cos( euuuxc                                          (5) 

   )cos()cos()()sin( euuuyc                                          (6) 

In this case, the linear velocity of the disk center of mass is: 
222

ccc yxV                                                                          (7) 

)cos()(2)sin(2)( 22222   euueueuuu                   (8) 

For couplings, the speeds in the X and Y directions are: 
   )sin()()cos( vvvxA                                                         (9) 

 2)cos()()sin(   vvvyA                                                     (10) 

The linear speed of the coupling is: 

 
222

AAA yxV    
 222 )(   vvv                                                         (11) 

The translational kinetic energy of the disk is: 
 

)]cos()(2)sin(2)([
2

1 22222   euueueuuuTG
         (12)

 

The rotational kinetic energy of the disk is: 
 

2

2

1
cr JT                                                                        (13)

 

The kinetic energy of the coupling is: 

 2

2

1
AAA VmT   

 
))((

2

1 222   vvvmA                                               (14)
 

In this case, the whole kinetic energy of the system is:  
 cA TTT                                                                           (15) 
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1
  euuumvvvmT cA   

2

2

1
)]cos()(2)sin(2   cJeuueu                                        (16)

 

2.3 Potential energy of the system 

In this paper, we considered that the distortion of the coupling directly affects the change of the 

center of the disk. Therefore, the bending deformation and torsional deformation of the shaft system 

must be considered with the effect of the distortion. 

The bending displacement of the shaft system is: 
22 )]sin)(sin)[(]cos)(cos)[(  vvuuvvuu                    (17) 

The torsional displacement of the shaft system is: 

                                                                   (18) 

For the system, its potential energy can be expressed as: 
  sin)sinsin(321 gvmuegmUUUU Ac                             (19) 

In this case, 1U is the energy of bending deformation: 
 

 ]]sin)(sin)[(]cos)(cos)([
2

1 22
1  vvuuvvuukU              (20)

 

2U is the energy of torsional deformation: 
 

2
2 )(

2

1
  tkU                                                            (21)

 

3U is the elastic potential energy of the coupling: 
 

2
(

2
(3 )

2

1
)

2

1
vvkuukU vu                                                   (22)

 

In the above formula, k is the bending stiffness, tk is the torsional stiffness, ,u vk k are the equiva-

lent stiffness of the disk and coupling. 

According to the relationship between initial deformation and gravity, the overall potential en-

ergy of the system can be written as: 

 22 ]sin)(sin)[(]cos)(cos)([
2

1
 vvuuvvuukU   

 sin
2

1

2

1
)(

2

1 222 gemvkukk cvut                                                       (23)
 

2.4 Generalized force of the system 

When the damping-force of the system is taken into account, the generalized force can be ex-

pressed as follows: 

  uu fucQ    

      Q c M     

     McQ                                                            (24) 

vv fvcQ     

      McQ    

c is the translational damping, , ,c c c    is the rotation damping. 

2.5 The Establishment of the Vibration Differential Equations 

In the following, each parameter variables are replaced into the Lagrangian equation. 
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In this case,  
 

)cos()cos()sin()( 2  



emememum

u

T

dt

d
cccc




                  (26)
 

 
)cos() 2

(  



emuum

u

T
cc

                                           (27)
 

ukvvuukvvuuk
u

U
u




 sin]sin)(sin)[(cos]cos)(cos)[(            (28)

 

For u , the Lagrangian equation can be organized as follows: 
2 2sin( ) cos( ) ( )c c c c um u m e m e m u u cu k u                  

[( )cos ( )cos ]cos [( )sin ( )sin ]sin uk u u v v k u u v v f                            (29) 

For： 
 




Q

UTT

dt

d















)(                                                     (30)

 

So the Lagrangian equation can be organized as follows: 

 
 ceuumeuumuumuuum cccc  )sin()()cos()()()(2 22

 cos)](sin)(sin)[(sin)](cos)(cos)[( uuvvuukuuvvuuk 

 Mkt  )(                                                                                                                  (31) 

For： 
 




Q

UTT

dt

d















)(                                                      (32)

 

So the Lagrangian equation can be organized as follows: 

 

 



MgemcJeuum

euumeumeumem

ccc

cccc





cos)sin()(

)cos()()cos(2)sin(

2

2




               (33) 

For v ： 
 

vQ
v

U

v

T

v

T

dt

d















)(


                                                     (34)

 

So the Lagrangian equation can be organized as follows: 
 

vv fvkuukvvkvcvvmvm AA  )cos()()()(                 (35) 

For： 
 




Q

UTT

dt

d















)(


                                                     (36)

 

So the Lagrangian equation can be organized as follows: 

 Mckvvuukvvmvvvm tAA   )()sin())(()()(2 2         (37) 

3. Result Analysis of Equations  

3.1 Solving the equation 

 For the differential equations of vibration established above, the numerical solution is gotten by 

using the Runge-Kutta algorithm in MATLAB. Obtained the response of free vibration under the 

condition of five exciations (different frequency) at the same time: 
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The vibration response of  

 
a(1)                                                             a(2) 

The vibration response of  

 
b(1)                                                            b(2) 

The vibration response of u  

 
c(1)                                                            c(2) 

The vibration response of v  

 
d(1)                                                            d(2) 
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The vibration response of  

 
e(1)                                                            e(2) 

Figure 4:The response of free vibration(left) and forced vibration(right) 

3.2 Results analysis 

The correlation between the responses is analyzed in the numerical aspect, and the coupling rela-

tionship of these five responses is quantitatively analyzed. The corresponding correlation obtained 

by MATLAB as shown in the following table. (For the vibration response of , choose to ignore it 

and other responses between the coupling because of its tiny response): 

 

Table 1:The correlation coefficient of the response 

free Φ&θ Φ&u Φ&v θ&u θ&v u&v 

correlation 0.3024 0.6567 0.5015 0.4917 0.5687 0.8433 

Delay(s) 48.4375    0    0 36.5087 11.3743 40.9442 

exciation  

correlation 0.9739 0.9535 0.9992 0.9357 0.9839 0.9488 

Delay(s)    0    0    0    0    0    0 

 

Through the analysis of the data in the table, it can be seen that the correlation between the re-

sponses is low and the degree of coupling is not high in the case of free vibration without external 

excitation. And it can be seen that there is a delay between the coupling of some responses. But 

when five (different frequency) exciations applied to the system, the correlation is significantly en-

hanced. It's shows that the degree of coupling is high. And there is no delay between the coupling of 

these responses. 

4. Conclusions 

To sum it up, when the disc eccentricity and distortion of coupling is taken into consideration , 

there is coupling between the response. And the relationship of these response is shown above. 

When the five excitation in different frequency applied to the system, the degree of the coupling is 

relatively higher which proves that there are affects among each response of the system. To reduce 

the vibration amplitude of a certain response, the whole analysis of the system needs to be carried 

out. 
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