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Sonic metamaterials have important applications in many fields such as noise control, and 

acoustic communication. Bwand gap and sound-absorbing spectrum are main judgements for 

the properties of sonic metamaterials. To broaden the resonant band gap and sound-absorbing 

spectrum, Woodpile structure was introduced into sonic metamaterials. Woodpile locally reso-

nant sonic metamaterials (LRSMs) are formed by orthogonally stacking square coated-ultralight 

metal rods and embedding them layer by layer in an poly urethane (PU) matrix. Calculations 

suggest that Woodpile LRSMs have wider band gaps, which are adaptable to all types of vibra-

tion polarizations. Using vibration modes and a mass-spring model, strong coupling effect is 

confirmed between the orthogonal resonances at the upper edge of the band gap, providing a 

wider bandwidth. Moreover, considering viscoelasticity of materials, woodpile LRSMs can im-

plement strong sound-absorbing effect in a wide range, which provides a new idea for the de-

sign and preparation of light weight and low frequency underwater sound-absorbing materials. 
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1. Introduction 

Locally resonant sonic metamaterials (LRSMs) have attracted much attention for their ability to 

break through the mass density law and exhibit novel physical properties, such as a negative 

modulus, negative density and band gaps [1–5]. Typical LRSMs are made of distributed inclusions 

embedded in a hard matrix and have superiority in shielding low-frequency sound because of their 

sub-wavelength band gaps [6–10]. A key issue for the industrial application of an LRSM is the nar-
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row bandwidth produced by the formation mechanism of the resonant band gap [11]. It has been 

found that relatively wide band gaps can be obtained by changing the LRSM structure [12–15] or 

by varying the elastic characteristics of the component materials [16–18]. However, these methods 

are usually based on changing intrinsic local resonance properties and thus usually limited and inef-

fective. Although the broadband effect of locally resonant sonic shields has been realized by comb-

ing resonances of different frequency, the manufacture of the shields is too complicated to be prac-

tical [11,16,19]. A novel LRSM is reported in this paper with the aim to use coupling resonances to 

broaden the band gap. 

A natural idea has been proposed to broaden the bandwidth of LRSMs using the coupling effect 

of resonators. The coupling of resonators produces a new vibration mode that affects and widens the 

band structure [20-24]. However, in the case of LRSMs having traditional structure, such as two-

dimensional LRSMs with rod dispersal [6,25–27] and three-dimensional LRSMs with sphere dis-

persal [1,7], the coupling effect between resonators has been rarely reported. In traditionally struc-

tured LRSMs, the unit cell usually contains one resonator, and the formation of the band gap de-

pends on the vibrations of the isolated resonators. The vibration mode of the resonators at the lower 

edge of the band gap is the vibration of the scatterers considered as particles [1,28]. In contrast, the 

vibration mode of the resonators at the upper edge of the band gap is the relative vibration between 

the matrix and scatterers [1,28]. There is only a phase difference and no correlation between the 

resonators in adjacent lattices. Thus, the movements of resonators in traditionally structured LRSMs 

are usually isolated and coupling is too weak to be observed. It is thus recognized that the introduc-

tion of complex lattices that contain multiple resonators in one unit cell is needed for LRSMs to 

have strong coupling between resonators. 

The present paper proposes a novel two-dimensional LRSM with complex lattices: a structure 

that is stacked layer-by-layer and having orthogonal resonations. Calculations suggest that there is 

strong coupling between the orthogonal resonations in the unit cell and that coupling produces a 

wider band gap for LRSMs with a woodpile structure. Compared with the two-dimensional LRSM 

having the same components, band gaps of woodpile-structure LRSMs adapt to all types of vibra-

tion polarization (i.e., longitudinal and transverse) and are wider by 128 Hz. In addition, consider-

ing viscoelasticity of materials, woodpile LRSMs can implement strong sound-absorbing effect in a 

wide range. 

2. Model and method of calculation 

The structure of a woodpile LRSM is shown in Figure 1b and its two-dimensional LRSM variant 

in Figure 1a. The woodpile structure can be obtained when the coated square column of the two-

dimensional LRSM in the interval position is rotated 90 degrees. In the present study, the scatters 

are made of steel and the coating material is silicone rubber. Coated steel square columns were em-

bedded in a matrix made of epoxy and the coupling effect was investigated by calculating the band 

gap structure and vibration modes. 

 
FIG. 1. Schematics of LRSMs: (a) a two-dimensional LRSM, (b) a stacked-structure LRSM, and 

(c) a unit cell of a woodpile structure with a simple cubic lattice. 
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Finite element methods (FEMs) are commonly used to calculate the band structure and vibration 

modes of LRSMs [29,30]. A distinct advantage of the FEM is the flexibility of modeling various 

materials with complex structure, good convergence and high precision [30]. The FEM software 

COMSOL Multiphysics was used to calculate the band structure and transmission. With an FEM 

based on the Bloch theorem, calculations of the dispersion relationship were made. The governing 

equation of elastic wave propagation in solids is given by 

 
    

   
  

 

   

 
           

 
   

 
   

   

   
                                                                                  (1) 

where ρ is the density, ui is the displacement, t is time, Cijkl denotes elastic constants, and xj de-

notes the coordinate variables x, y and z. Here, it is assumed that the displacement varies harmoni-

cally over time. Thus, the discrete form of eigenvalue equations of the FEM in the unit cell can be 

written as 

          ,                                                                                                                        (2) 

where K and M are respectively the stiffness and mass matrices, u is the displacement and ω is 

the angular frequency. According to the Bloch theorem, only one unit cell needs to be considered in 

the calculation. 

The woodpile structure can be considered a simple cubic lattice. A schematic of a woodpile-

structure unit cell with a simple cubic lattice is shown in Figure 1c. The structure is assumed to be 

infinite and periodic in the x, y and z directions. Because the calculation is compressed in one unit 

cell, the band structure is calculated by applying the Bloch–Floquet periodic boundary conditions 

for the boundaries of the unit cell along the x, y and z directions [31]: 

                           ,                                     

                           ,                                                                                                (3) 

                           ,                                     
where kx, ky and kz are the components of the Bloch wave vector in the x, y and z directions re-

spectively, and a is the lattice constant. With a given wave number k, a series of eigenfrequencies 

and corresponding eigenmodes can be obtained employing the FEM. The band structure can be ob-

tained by sweeping k along the boundaries of the first Brillouin zone. The selected material parame-

ters were density ρ = 1.18 g/cm
3
, Young’s modulus E = 435 MPa, and shear modulus G = 159 MPa 

for the epoxy background; ρ = 1.3 g/cm
3
, E = 0.1175 MPa, and G = 0.04 MPa for the silicone rub-

ber; and ρ = 7.78 g/cm
3
, E= 201.6 GPa, and G = 81 GPa for the steel square columns. 

The Acoustic-solid Interaction (frequency domain) module was used to calculate the transmis-

sion spectrum. Finite woodpile units are considered on the z axis, and infinite units along x and y 

axes are considered using Bloch–Floquet periodic boundary conditions. It was assumed that a plane 

sound wave is incident along the z axis and used transmission coefficients to represent the transmis-

sion spectrum of the woodpile-structure LRSM. To reduce reflection at boundaries, perfectly 

matched layers were chose to model infinite air domains at the top and bottom. 

3. Results and discussion 

The woodpile-structure LRSMs are transformed from two-dimensional LRSMs, and we thus dis-

cuss first the differences in their band structures. The band structures of the two-dimensional LRSM 

and woodpile-structure LRSM are shown in Figures 2 a and b, respectively. The width of the square 

rods is 0.3 cm. The thickness of the coating materials is 0.1 cm, and the lattice constant is 1 cm. For 

the two-dimensional structure, the displacement can be described by two independent parts: the 

pure transverse displacement along the z axis (dashed line in Fig. 2a) and the displacement of mixed 

longitudinal and transverse modes in the x, y plane (solid line in Fig. 2a). The band gap is between 

1703.4 and 2227.9Hz for the modes in the x, y plane, and between 605.4 and 797.93 Hz for modes 

out of the x, y plane (as shown in Fig. 2a). Considering all types of vibration polarization (i.e., lon-

gitudinal and transverse), there are no absolute band gaps in the two-dimensional LRSM. For the 

woodpile structure, there is a band gap between 1758.9 and 2411.5 Hz. Owing to its three-
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dimensional structure, the band gap adapts to all types of vibration polarization (as shown in Fig. 

2b). The bandwidth of the woodpile-structure LRSM is approximately 652.6 Hz, which is approxi-

mately 128 Hz broader than that of the two-dimensional LRSM in the x, y plane. It is thus easier to 

realize a wider band gap that can be adapted to different polarization states with the woodpile-

structure LRSM. 

 
FIG. 2. Band structure of the two-dimensional LRSM (a) and stacked structure (b). 

 

 
FIG. 3. Vibration modes and mass–spring models of the two-dimensional LRSM in the x, y plane: 

(a)(c) lower edge and (b)(d) upper edge of the band gap. 

The vibration modes of lower and upper edges of band gaps in the x, y plane for the two-

dimensional LRSM are shown in Figure 3a and b. It is seen that the vibration mode of the lower 

edge of the band gap is the vibration of a metal block considered as one particle, and a fixed delay 

in the phases of the vibrations between adjacent lattices maintains the dynamic balance of the whole 

system (Fig. 3a). [25,28] For the lower edge of the two-dimensional LRSM, the vibration model can 

be simplified as a mass–spring system (as shown in Fig. 3c), in which particle m represents the 

equivalent mass of the oscillator (steel block) and spring k represents the equivalent stiffness (of the 

coating material) of the oscillator. Additionally, the frequency of the lower edge can be evaluated as 

[32] 

   
 

  
 

 

 
.                                                                                                                                 (4) 
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FIG. 4. Vibration modes and mass–spring models of the stacked-structure LRSM: (a)(c) lower 

edge and (b)(d) upper edge of the band gap. 

In contrast, the vibration mode of the upper-edge band gap is the vibration of the host media with 

the reversed phase of the metal block (as shown in Fig. 3b) [24,27]. For the upper edge of the two-

dimensional LRSM, the vibration model can be simplified as a mass–spring–mass system (as 

shown in Fig. 4b), in which particles m and M respectively represent the equivalent mass of the 

steel block and matrix, and spring k represents the equivalent stiffness of the coating material. The 

frequency of the lower edge can be evaluated as [32] 

   
 

  
 

      

  
.                                                                                                                           (5) 

The vibration modes at band gap edges out of the x, y plane are similar to those in the x, y plane, 

and their frequencies can also be evaluated with formulas (4) and (5). However, the value of the 

equivalent stiffness varies greatly between the two polarized modes. The compression or tension 

deformation produced by the tensile modulus of coating materials plays a dominant role in the x, y 

plane, and k is thus a function of tensile modulus E. Meanwhile, the shear deformation produced by 

the shear modulus dominates out of the x, y plane, and k is thus a function of shear modulus G. Be-

cause the tensile modulus is often greater than the shear modulus for common materials, frequen-

cies of the band gap in the x, y plane are usually higher than those of out of the x, y plane, and it is 

difficult to overlap their band gaps in order to produce absolute band gaps for the two-dimensional 

LRSM. According to the vibration modes, the coupling between adjacent resonances is weak in the 

two-dimensional LRSM. 

For the woodpile-structure LRSM, the vibration mode at the lower edge is the vibration of one 

steel column along the z axis, and the other columns are stationary relative to the matrix (Fig. 4a). 

We can make the same simplification of a mass–spring model in Figure 4c as made for the vibration 

mode of the two-dimensional LRSM in the x, y plane. The frequency is evaluated as 

   
 

  
 

  

 
,                                                                                                                                   (6) 

where kE is a function of tensile modulus E. The form of formula (6) is the same as that of for-

mula (4), and the calculated frequency is similar to that of the lower edge of the two-dimensional 

LRSM. 

The vibration mode of the upper-edge band gap (as shown in Fig. 3b) is one steel column per-

pendicular to the y direction vibrating with the matrix and the adjacent column parallel to the y di-

rection being stationary. Two resonances exist in one unit cell at the upper-edge band gap: compres-

sion resonance (subject to the tensile modulus) and shear resonance (subject to the shear modulus). 

The compression resonance is the relative vibration between the vibrating column and matrix, and 

is similar to vibration of the two-dimensional LRSM in the x, y plane. Shear resonance is the vibra-
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tion between the matrix and the stationary column, and is similar to vibration of the two-

dimensional LRSM out of the x, y plane. We can simplify the vibration mode of the upper-edge 

band gap as a mass–spring–mass–spring model (Fig. 4d). We evaluate the upper-edge frequency as 

   
 

  
                                    

   
,                                                                  (7) 

where kG and kE are respectively functions of shear modulus G and tensile modulus E. Both for-

mulas (5) and (7) contain kE, and the value of f4 is higher than that of f3, thus opening a band gap. In 

addition, compared with formula (5), formula (7) includes the effect of shear-deformation-induced 

shear resonance between the matrix and stationary column. It is observed here that the frequency 

shifts to a higher value and the band gap widens. The above analysis reveals that there is strong 

coupling between cross resonances at the upper-edge band gap of the woodpile-structure LRSM 

originating from the interaction between compression resonance and shear resonance. This strong 

coupling produces a band gap adaptable to all polarization states when the wave travels along the z 

axis. In addition, both shear and compression deformations appear in coupled resonances, and the 

frequency is thus higher and the band gap wider. It is seen that the coupling effect is beneficial to 

the formation of a wider band gap. 

For other types of LRSMs with complex lattices, such as multicoaxial cylindrical LRSMs [26], 

although multi-scale resonators have been introduced into one unit cell, the result has been multiple 

band gaps and the band gaps have not obviously widened. This is because the resonators with dif-

ferent frequencies vibrate in the same plane, and it is thus difficult to generate strong coupling be-

tween the resonators. In the woodpile-structure LRSM, the resonators in one unit cell are intention-

ally arranged in perpendicular directions, and they have the same resonant frequencies. The orthog-

onal resonators act together at the same frequency, thus readily generating strong coupling. It is 

seen that the coupling strength is related to the arrangement of resonators in the unit cell. 

 
FIG. 5. Transmission coefficients of the stacked-structure LRSM in an air background. 

The FEM was applied to investigate the transmission spectrum and better represent the band gap 

of the woodpile-structure LRSM. A plane sound wave in an air background is incident on a wood-

pile-structure LRSM having four units along the z axis and an infinite number along x and y axes. 

By sweeping the frequency, the transmission coefficients of the woodpile-structure LRSM in an air 

background were calculated as shown in Figure 5. It is seen that there are two peaks at 1750 and 

2850 Hz, and a dip at 1850 Hz. The dip results from the band gap in which wave propagation is 

inhibited. The location of the dip agrees with the band gap region (1750 to 2400 Hz). The peaks are 

the result of resonances in which displacement along the z axis is dominant. The frequency of 1750 

Hz is the lower band gap edge where the mass block vibration runs along the z axis and has the re-

verse phase in the adjacent unit cell, and thus couples with the sound wave traveling along the z axis 

to provide a magnified transmission coefficient. At 2850 Hz, although the frequency is not the edge 
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frequency of the band gap, the vibration mode is generated by the relative vibration of the matrix 

and steel column along the z axis. The transmission spectrum suggests that the woodpile-structure 

LRSM can be used as an acoustic filter or sound insulator. 

 
FIG. 6 Underwater absorption coefficients of the Woodpile structure LRSM 

In LRSMs, locally resonant absorption coincides with viscoelastic deformation. Considering vis-

coelasticity of materials, woodpile LRSMs can implement strong sound-absorbing effect in a wide 

range (as shown in Fig. 6), which provides a new idea for the design and preparation of light weight 

and low frequency underwater sound-absorbing materials. 

4. Conclusion 

This study systematically investigated the band structures and vibration modes of woodpile-

structure LRSMs to study coupling between resonances. The observed coupling produces a wider 

band gap that can be adapted to all types of vibration polarization. The calculated vibration modes 

and mass–spring model verify that strong coupling exists between orthogonal resonances (the shear 

resonance and compression resonance) at the upper edge of the band gap, and provides a wider 

bandwidth. In addition, considering viscoelasticity of materials, woodpile LRSMs can implement 

strong sound-absorbing effect in a wide range. The results suggest a novel design for broad band 

gaps, leading to further opportunities for practical applications of LRSM. 
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