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In this paper, we propose a series of variable step-size (VSS) filtered-x LMS algorithms (VSS-
FXLMS) for narrowband active noise control (ANC, NANC). They are computationally efficient
and present improved stability and performance as compared with two existing VSS-FXLMS al-
gorithms developed recently for the NANC. The VSS update terms of the proposed algorithms
are positive functions of the residual noise. Extensive simulations with synthetic/real secondary
paths and primary noises are conducted to show the performance advantages of the proposed
VSS-FXLMS algorithms over their counterparts.

Keywords: Active noise control (ANC), narrowband ANC (NANC), variable step-size FXLMS
(VSS-FXLMS), tracking capability, stability.

1. Introduction

In the last two decades, a great deal of attention has been paid to the development of practical
and effective active noise control (ANC) systems for real-life applications [1, 2]. The ANC systems
may be roughly divided into two types according to the frequency characteristics of the targeted noise
signals. The first type is called broadband ANC (BANC) that is used to suppress noise signals whose
frequency distribution spans a wide and continuous range in the frequency domain. The second type
is called narrowband ANC (NANC) which is designated to mitigate noise signals that contain a single
or multiple frequency components which are discretely spaced in the frequency domain [2]. In this
work, we focus on the second type.

The NANC systems may be loosely clarified into two kinds according to their controller charac-
teristics. If the controller is realized by a first-order FIR filter or magnitude/phase adjuster (MPA), the
system may be called FIR-based NANC system. If the controller is a linear combiner (LC) with a co-
sine and a sine reference wave, the control filter weights are actually two discrete Fourier coefficients
(DFC), and the system may be called DFC-based NANC system [3, 2]. The second kind of NANC
system is considered in this work.

In Fig. 1, a typical DFC-based NANC system is depicted [2, 3]. The frequencies of the refer-
ence cosine and sine waves{xai

(n) = cos(ωin), xbi
(n) = sin(ωin)}q

i=1 are specified by virtue of a
synchronization signal acquired usually by a nonacoustic sensor like tachometer. Here,q indicates
the number of frequencies targeted by the NANC system. The control filter weights{âi(n), b̂i(n)}
are DFCs of theith individual secondary sourceyi(n) for the ith frequency channel. The secondary
source of the NANC system is expressed by

y(n) =
q∑

i=1

yi(n) =
q∑

i=1

[
âi(n)xai

(n) + b̂i(n)xbi
(n)

]
. (1)
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Fig. 1 Block diagram of a typical DFC-based NANC system

S(z) shows the discrete transfer function of the secondary path which includes the loudspeaker, the
microphone that captures the residual noisee(n), and the space between them. The secondary path
may be expressed as an FIR filter:

S(z) =
M−1∑

m=0

smz−m (2)

whereM is the length, and{sm}M−1
m=0 are the FIR filter coefficients of the secondary path. This

secondary path is usually identified in advance by some system identification technique like Wiener
filter, and is indicated bŷS(z).

Ŝ(z) =
M̂−1∑

j=0

ŝjz
−j (3)

whereM̂ is the length, and{ŝj}M̂−1
j=0 are the FIR coefficients of an estimate of the secondary path.

The primary noise signalp(n) is given by

p(n) =
q∑

i=1

[ap,i(n)xai
(n) + bp,i(n)xbi

(n)] + vp(n) (4)

where{ap,i, bp,i}q
i=1 are the DFCs of the frequency components residing in the primary noise signal,

vp(n) is a zero-mean additive random noise with varianceσ2
p. This additive noise embodies all random

factors related to the targeted noise. It is unattended in the NANC system, but affects the performance
of the overall system in a statistical way.

The control filter weights of the system are updated by a filtered-x LMS (FXLMS) algorithm

âi(n + 1) = âi(n) + µe(n)x̂ai
(n) (5)

b̂i(n + 1) = b̂i(n) + µe(n)x̂bi
(n) (6)

whereµ is a uniform step size for all frequency channels,x̂ai
(n) and x̂bi

(n) are reference waves
filtered by the estimate of the secondary pathŜ(z)

x̂ai
(n) =

M̂−1∑

j=0

ŝjxai
(n− j) (7)
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x̂bi
(n) =

M̂−1∑

j=0

ŝjxbi
(n− j). (8)

The DFC update of this FXLMS algorithm only requires three multiplications for one frequency.
Therefore, it is very efficient. In fact, it also works well as long as the secondary-path estimateŜ(z)
is close to its truth. That is why the FXLMS boasts of being the most popular algorithm in ANC.
However, in some real applications the performance of the FXLMS may be inadequate. For example,
if a NANC system is applied to noises generated by large-scale cutting machines, it is desirable that
the system converges as fast as possible and presents nice stability as well as designed steady-state
noise reduction performance, even in the presence of harsh load fluctuation. In such a situation, the
FXLMS is not good enough. One may consider to use the FXRLS algorithm to fulfill the performance
requirements, but the FXRLS costs much more than the FXLMS despite that its tracking capability is
only comparable to that of the FXLMS.

To remedy the FXLMS and FXRLS, we recently proposed two variable step-size (VSS) FXLMS
(VSS-FXLMS) algorithms [4, 5], after carefully investigating existing typical VSS-LMS algorithms
developed in the context of adaptive FIR filtering [6]-[11]. These two previous algorithms have
advantages over the conventional FXLMS, but also possess their own drawbacks.

In this work, we propose a series of VSS-FXLMS algorithms which are more stable than the
VSS-FXLMS developed in [4] and includes the algorithm shown in [5] as a similar case. Extensive
simulations are conducted to prove their improved stability and promising applicability.

2. The proposed VSS-FXLMS algorithms

First, let’s have a look at our previous VSS-FXLMS algorithms. Their DFC update equations are
the same as in the FXLMS except that their step sizes are variable and are updated as follows:

µ(n + 1) = ξµ(n) + ηe(n)x̂a1(n)e(n− 1)x̂a1(n− 1) [4] (9)

µ(n + 1) = ξµ(n) + ηe2(n)e2(n− 1) [5] (10)

whereξ andη are user parameters. Parameterξ is less than 1.0, but very close to 1.0, such as 0.999,
0.9995, etc.,η usually takes a very small positive value. The combination ofξ andη defines the
properties of the VSS.

If the user parameters in (9) are well chosen, the VSS-FXLMS algorithm presents significantly
improved performance as compared to the conventional FXLMS algorithm [4]. However, this VSS-
FXLMS algorithm has an inherent problem of its own. The second term in the right-hand side (RHS)
of (9) is the VSS update term. The VSS may drift into the minus zone despite the ability of the overall
algorithm to avoid such an unfavorable situation, because its update term has a risk of becoming
negative during the adaptation process. It has been found via simulations that, if the user parameters
in (9) are not properly set the system will work very poorly or even diverge. In-depth analysis of the
algorithm has not been done, but extensive simulations have revealed these unfavorable properties of
the algorithm.

Obviously, the VSS update term in the RHS of (10) is always positive, which implies that the
trouble with (9) will not happen as long as the user parameters are properly set. At steady state, the
mean value ofe2(n)e2(n − 1) is approximatelyσ4

p, as the dominant component withine(n) will be
vp(n). As E[e4(n)] reduces to3σ4

p at steady state,e2(n)e2(n− 1) behaves like1
3
e4(n) in a statistical

sense. The performance of the algorithm using this VSS is comparable to the conventional one [6],
but it requires less computational effort [5].

Inspired by the above observations, we propose the following general VSS update equation

µ(n + 1) = ξµ(n) + η|e(n)|r, r = 1, 2, · · · (11)
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which forms a series of VSS-FXLMS algorithms. Apparently, the VSS is always positive, resulting
in stable system performance when the user parameters are well selected. Ifr is set to 1, the VSS
update term will need only a single multiplication. Three multiplications are required forr = 2. For
r = 3 and4, the number of multiplications will be four. Therefore, the proposed VSS update is quite
slim. The problem is how the user parameterr affects the performance of the resultant algorithm.

3. Simulation results

To confirm the superior performance of the proposed VSS-FXLMS algorithm, extensive simu-
lations have been conducted that synthetic/real secondary paths and primary noise signals are used.
Here, only some representative simulation results are provided.

In all simulations, unless otherwise specified, the primary noisep(n) consists of three frequency
components (q = 3, ω1 = 0.1π, ω2 = 0.2π, ω3 = 0.3π). Their DFCs area1 = 2.0, b1 = −1.0, a2 =
1.0, b2 = −0.5, a3 = 0.5, and b3 = 0.1. The variance of the additive noisevp(n) is 0.1. Two
secondary paths were used. The first one is an FIR filter or lowpass filter of lengthM = 21 generated
by a Matlab function fir1 (cutoff frequency= 0.4π). Its estimate with lengtĥM = 31 was obtained in
advance via the LMS algorithm, where the step size wasµs = 0.0025, the input white noise variance
was set to1.0, and the additive observation noise was set to be0.01% of the clean observation data
in power (i.e., SNR=40 [dB]). The second one is a real IIR filter given in [2]. An FIR filter of length
M̂ = 32 was used to approximate the IIR filter, and was identified in the same way the first secondary-
path estimate was obtained. A hundred (100) independent runs were done for each case to compare
ANC systems with FXLMS and VSS-FXLMS algorithms in terms of MSE between the control filter
weights (DFCs) and their optimum values{âi,opt, b̂i,opt}q

i=1 given in [3]. User parameters for all VSS-
FXLMS algorithms were adjusted very carefully such that all of them present similar steady- state
performance.

3.1 Case A: An FIR secondary path

The conventional FXLMS, the VSS-FXLMS by Huang et al. [4], the VSS-FXLMS by Xiao et al.
[5], and the proposed algorithm withr = 4 are plotted in Fig. 2.

It may be clearly seen in Fig. 2 that the three VSS-FXLMS algorithms converge similarly in the
early stage of adaptation, much faster than the conventional FXLMS. However, the VSS-FXLMS
algorithm by Huang et al. [4] starts rising when it approaches its steady state, showing the risk of
diverging or possibly reaching some higher MSE level as the iteration goes on. This case lets us have
a look at the poor stability of the VSS-FXLMS algorithm by Huang et al. [4].

In Fig. 3, the simulation results for the proposed algorithm withr = 1, 2, · · · , 6 are provided,
where the primary noise signal was deliberately made nonstationary by switching its DFCs signs to
the opposite just in the middle of the adaptation process.

From Fig. 3, one may readily find that the proposed algorithm converges faster in the early stage
as r becomes larger in both the first and the second half. However, whenr is larger than3, the
algorithm actually becomes quite sluggish and takes longer to reach the steady state as compared to
the case withr < 3. Therefore, it is better for us to setr ≤ 3 when applying the proposed algorithm.

3.2 Case B: A real IIR secondary path

In this case, a real IIR filter given in [2] was used. Its estimate is an FIR filter witĥM(= 32)
coefficients. It was obtained also via the LMS algorithm in exactly the same way the FIR secondary-
path estimate was identified. The primary noise signal included in this case was generated by a
large-scale cutting machine. It is nonstationary, with the first and second half being recorded when
the machine was running at1400 rpm and1600 rpm, respectively. The frequency analysis of the 1st
and 2nd half of the primary noise is shown in Fig. 4. In the first half, five (5) frequencies (0.0804π,
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Fig. 2 Comparison among three VSS-FXLMS algorithms (conventional:µ = 0.0005, VSS-FXLMS
(Huang (2013), [4]) : ξ = 0.9995, η = 3.5× 10−5, VSS-FXLMS (Xiao (2015), [5]) :
ξ = 0.9995, η = 2.0× 10−5, Proposed:r = 4, ξ = 0.9995, η = 2.28× 10−6).

0.1609π, 0.2414π, 0.3218π, 0.4024π or 411.6480 Hz, 823.8080 Hz, 1235.9680 Hz, 1647.6160 Hz,
2060.2880 Hz) were targeted. In the second half, four (4) frequencies (0.0902π, 0.1807π, 0.2710π,
0.3614π, or461.8240 Hz,925.1840 Hz,1387.5200 Hz,1850.3680 Hz) were the subjects of the NANC.
The proposed algorithm withr = 1, 2, and3 was applied to this real nonstationary primary noise
signal.

The residual noises produced by the FXLMS and our proposed algorithm withr = 1, 2, 3 are
plotted in Fig. 5. As noted with ease in Fig. 5, the proposed algorithm converges faster and indicates
more noise reduction asr gets larger in both the first and second half, showing its effectiveness and
applicability.

Furthermore, in the first half, the primary noise was reduced by approximately11 dB by all al-
gorithms, but the proposed algorithm withr = 3 showed the fastest convergence. The primary noise
in the second half was reduced by7 and11 [dB] by the FXLMS and the proposed algorithm, respec-
tively, and the proposed algorithm also presented the faster convergence.

4. Conclusions

In this paper, a series of VSS-FXLMS algorithms have been proposed for NANC. They enjoy
improved stability as compared to the first VSS-FXLMS algorithm dedicated to the NANC [4]. They
also present overall performance better than that of another previous VSS-FXLMS algorithm [5].
A lot of simulations have been conducted to prove our claim regarding the proposed VSS-FXLMS
algorithms. Implementing the proposed algorithms in real applications is the first future topic. In-
depth analysis of them is technically demanding, which is expected to provide a very useful piece of
information on their statistical behaviors. This is the second topic for further research.
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