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This study is motivated to achieve simultaneous vibration suppression and energy har-
vesting in a broad frequency band. For this purpose, nonlinear vibration absorbers are 
considered. Nonlinear energy sink (NES) is a special nonlinear vibration absorber as it 
possesses essential nonlinear stiffness. The NES is capable of achieving targeted energy 
transfer (TET) that is the ability to direct vibrating energy from a source to a receiver in 
a one-way irreversible fashion. In this sense, the NES is considered to be weakly coupled 
to the primary system. This study focuses on the TET performances of a nonlinear vibra-
tion absorber coupled to three different primary systems. By varying the stiffness of the 
primary system, three combined systems result, namely, strongly coupled, moderately 
coupled, and weakly coupled. The percentage of the instantaneous energy in the absorber 
is used as a measure for efficacy of the TET. The nonlinear normal mode (NNM) analysis 
is conducted on the corresponding Hamiltonian systems. The frequency-energy plots 
based on the NNM analysis results and wavelet transform spectra of simulated responses 
are used to reveal the initial energy dependence and frequency contents in the responses. 
The computer simulation results show that the nonlinear vibration absorber can possess 
the behaviors similar to those of the NES if it is weakly coupled to the primary system.  
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1. Introduction 
A vibration absorber is a common device to protect a host system from a harmonic excitation. 

When attached to the host system, the vibration absorber can suppress its steady state response if its 
natural frequency is tuned to be the exciting frequency. However, performance of vibration absorbers 
deteriorates significantly if the exciting frequency varies. Nonlinear vibration absorbers have been 
proposed to improve robustness in a broad frequency band [1-3]. In recent years, there has been a 
growing interest in harvesting energy from ambient vibration for self-powered devices. A popular 
way to convert vibrating energy into electricity is to use a linear oscillator. However, its performance 
will be compromised if ambient vibration is not sinusoidal form or harmonic exciting frequency var-
ies from the natural frequency of the oscillator. Nonlinear oscillators have been investigated for the 
purpose of wide band energy harvesting [4-6]. It has been much desired to use nonlinear vibration 
absorbers to achieve simultaneous vibration suppression and energy harvesting.  

Over the last 15 years, nonlinear energy sink (NES) technique has been gaining popularity as a 
better solution for broadband vibration suppression [7-9]. Unlike nonlinear vibration absorbers, the 
NES possesses an essential nonlinearity so that it can resonate at any frequency as long as the exciting 
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energy exceeds the threshold level. Many studies have shown that the NES exhibits some unique 
features such as targeted energy transfer (TET), 1:1 resonance, strongly modulated response (SMR), 
etc. and has the attractive capability of wideband vibration suppression.  

In [10], an apparatus was developed for the purpose of simultaneous vibration suppression and 
energy harvesting in a broad band. The developed vibration absorber may be considered to be a var-
iant NES as its stiffness contains both linear and nonlinear terms. The absorber spring was designed 
to keep its linear stiffness very low so that the natural frequency of the absorber was much lower than 
that of the primary system. The study showed that the apparatus was able to achieve the TET. In [11], 
the similar apparatus was used for study of piezoelectric energy harvesting. In the case of linear vi-
bration absorbers, the ratio a p    is referred to as the tuning parameter where a  is the natural 
frequency of the absorber and p  is the natural frequency of the primary system. A NES system may 
be considered to be a nonlinear vibration absorber with 0  . This study focuses on transient per-
formances of nonlinear vibration absorbers in terms of energy transfer. The three systems with dif-
ferent   values are considered. The system with 1   is considered to be strongly coupled, the sys-
tem with 0.5   is considered to be moderately coupled, and the system with 0.3   is considered 
to be weakly coupled.  The rest of the paper is organized as follows. Section 2 introduces the apparatus 
and its modelling. Section 3 presents computer simulation. Section 4 draws the study conclusions.  

2. Modelling 
The nonlinear vibration absorber developed in [11] is used in this study. The equations of motion 

for a combined system free of external excitation are defined by  

  3
1 3 0p p p p p p am x c x k x c z k z k z V              (1) 

      3
1 31 0a a p p p pm z c z k z k z V c x k x               (2) 

where px  and ax  represent the displacement of the primary mass and the absorber mass, respectively,  

pm , pc , and pk  are the mass, the damping coefficient, and the stiffness of the primary system, re-
spectively, am  and ac  are the mass and damping coefficient of the absorber, respectively, 1k  and 3k  
are the linear stiffness and nonlinear stiffness of the absorber spring, respectively; a pz x x   is the 
relative displacement between the absorber mass and primary mass, am m   is the mass ratio. The 
dynamics of the energy harvesting circuit is defined by 

 0SV R C V z       (3) 

where Θ is the electromechanical coupling coefficient of the PEH; V is the voltage across the load 
resistor whose resistance is R and; CS is the capacitance of the PEH. 
 In order to investigate energy transfer from the primary system to the absorber system, the 
percentage of the instantaneous energy in the absorber is defined as 
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where ( )aE t  is the instantaneous energy in the absorber at time t  and defined as 
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and ( )pE t  is the total energy in the primary system at time t and defined as  

      2 21 1
2 2p p p p pE t m x t k x t    (6) 

In addition, the accumulated energy harvested by the PEH is defined as 

    2

0

t

hE t V t Rdt    (7) 

 In order to determine an initial energy threshold required to engage the absorber mass into 1:1 
resonance, a nonlinear normal mode (NNM) analysis [7] is conducted. For this purpose, the underly-
ing Hamiltonian system is considered 
 3

1 3 0p p p pm x k x k z k z       (8) 

 3
1 3(1 )( ) 0a p pm z k z k z k x         (9) 

The NNM analysis starts with defining complex variables as follows 

 1 2 and p p a ax j x x j x          (10) 

where   is the dominant frequency or also known as the fast oscillating frequency and 1j   . By 
rearranging these new complex variables, displacements and accelerations of the primary system and 
absorber system are obtained as  
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where the overhead bar represents complex conjugate. Since periodic orbits are sought, it is assumed 
that the primary system and absorber oscillate with the same fast frequency ω, the previously defined 
complex variables in Equation (10) are approximately expressed in terms of the fast frequency ω, 

j te  and modulated by slowly varying amplitudes ( )i t , 1, 2i   as 
 1 1 2 2( ) ( )  and ( ) ( )j t j tt t e t t e        (13) 

Substituting Eqs. (11), (12), and (13) into Eqs. (8) and (9) and simplifying them by neglecting higher 
order terms associated with 3j te   and 5j te   result in 
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  (15) 

where dot denotes the derivative with respect to time. Furthermore, a polar form of complex ampli-
tudes is introduced as    

1
j ta t e    and    

2
j tb t e   , where a(t) and b(t) are real amplitudes and 

( )t  and ( )t  are real phases. Substituting them into Eqs. (14) and (15) and separating the real and 
imaginary parts yield four first-order differential equations about variables a ,  , b , and   [9]. 
Since periodic solutions are sought, the four first-order differential equations become four coupled 
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nonlinear algebraic equations by letting the derivatives of a ,  , b , and   be zero. Furthermore, the 
system is assumed to oscillate in phase   , a set of two coupled nonlinear algebraic equations 
result 
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The two equations are numerically solved for a and b by specifying a frequency ω. If 0a   and 0b  , 
the system is in in-phase motion while if 0a   and 0b   the system is in out-of-phase motion. In 
general, the periodic responses can be expressed as follows 

        1 1 2 2cos ,  cos
2 2p p a ax t X t x t X t

j j
    

 
 

      (18) 

where pX a   and aX b  . As the system is Hamiltonian, its total energy is equal to its poten-
tial energy defined as 

 2 2 4
1 3

1 1 1
2 2 4p pE k X k Z k Z     (19) 

where a pZ X X  .  

3. Computer Simulation 
In order to define level of coupling between the primary system and the absorber system, Eqs. (1)

, (2), and (3) are reformulated by defining a dimensionless time pt   as 
 2 3

32 2 0p p p p ax x x z z k z V               (20) 
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and prime represents derivative with respect to  . Note that the variable   is referred to as the tuning 
ratio [12]. In the case of linear vibration absorbers, 1   is referred to as constant tuning. In the case 
of nonlinear vibration absorbers, if  0  , the system becomes a true NES whereas if 1  , the 
system becomes a traditional nonlinear vibration absorber. In what follows, three systems will be 
considered by varying the tuning ratio. With 1 0.3  , the absorber is weakly coupled to the primary 
system. With 2 0.5  , the absorber is moderately coupled to the primary system.  With 3 1.0  , 
the absorber is strongly coupled to the primary system. In simulation, the following parameters are 
kept constants with the values 
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7 3

1 3
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The procedure to identify the above parameter values can be found in [11]. The linear natural fre-
quency of the absorber is 1 2 4.5a af k m    Hz. Using the specified   values, it is found that

1 15.0pf   Hz, 2 9.0pf   Hz, and 3 4.5pf   Hz, respectively. Thus, 
1

37.752 10pk    N/m, 

2

32.791 10pk    N/m, and 
3

26.977 10pk    N/m, respectively. The system is assumed to be re-
leased from an initial condition (0) (0)p ax x X  , (0) 0px  , (0) 0ax  . To have a fair comparison, 
the free responses are generated by keeping the initial potential energy constant. Therefore, the initial 
displacement for each of the three systems is determined by 

 
2 (0) ,  1,  2,  3i

pi

EX i
k

    (23) 

where (0)E  is the specified initial energy.  
Figure 1 shows the time responses with 2(0) 2.736 10E    J. The corresponding initial dis-

placements are 1 2.67X   mm, 2 4.45X   mm, 3 8.90X   mm, respectively. As shown in Fig. 1 (a), 
for the weakly coupled system, the energy is quickly localized in the absorber mass and the TET is 
established. On the other hand, as shown in Fig. 1(e), for the strongly coupled system, the energy 
transfer does not occur and the TET is not activated. As shown in Figs. 1(b) and 1(f), the output 
voltage of the weakly coupled system is greater than that of the strongly coupled system. Figure 2 
shows the corresponding percentages of the instantaneous energy in the absorber system and the ratio 
of the accumulated harvested energy to the initial energy. It is shown that the weakly coupled system 
has the fastest energy transfer from the primary system to the absorber system among the three sys-
tems. It is also shown that the PEH output voltage of the weakly coupled system is greatest among 
the three systems. 

 
Figure 1: Time responses of the systems with 2(0) 2.736 10E    J, (a) and (b) 1 0.3  ; (c) and (d) 

2 0.5  ; (e) and (f) 3 1.0  . ( )px t  (blue solid line), ( )ax t  (green dotted line). 
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Figure 2: Simulation results with 2(0) 2.736 10E    J, (a) the percentages of the instantaneous en-
ergy of the absorber system defined by Eq. (4); (b) the ratio of the accumulated harvested energy to 
the initial energy: blue solid line for 1 0.3  ; green dotted line for 2 0.5  ; red dashed line for 

3 1.0  .  
 Figures 3 and 4 are the so-called frequency-energy plots for the cases 1 0.3   and 2 0.5  , 
respectively. In the figures black solid lines represent the two backbone branches computed by Eq. 
(19) based on the results of the NNM analysis. The in-phase branch is denoted by S11+ while the 
out-of-phase branch is denoted by S11-. The coloured areas represent the contour plots of the wavelet 
transform (WT) spectra obtained using the relative displacements from computer simulation. In the 
figures, the four initial energy (IE) levels correspond to low-IE, medium-IE, medium-high-IE, and 
high-IE, respectively. As shown in the figures, the S11+ backbone branch originates from the first 
natural frequency of the linearized system while the S11- backbone branch starts from the second 
natural frequency of the linearized system. The ET indicated in the figures represents the energy 
threshold. For a true NES or 0  , the ET marks the beginning of 1:1 resonance and energy transfer 
from the primary mass to the NES mass. If the initial energy level exceeds the ET, the NES mass is 
set into oscillation in the frequency of the primary system. As a result, the responses are attracted to 
the S11+ branch and the desired TET is established. If the IE is lower than the ET, the responses will 
be attracted to the S11- branch and the TET cannot be achieved [9]. In the case of 0 1  , decreas-
ing the   value will move the S11- branch up and the ET to the right. This results in a strong non-
linear behaviour and energy concentration on the S11+ branch if the IE reaches the ET, as indicated 
in Figs. 3(c) and 3(d).  On the other hand, increasing the   value will move the S11- branch down 
and the ET to the left. As the result, less IT is required to engage the absorber mass in 1:1 resonance. 
However, the responses exhibit a weak nonlinear behaviour since the 1:1 resonance frequency is low 
as indicated in Figs. 4(b), 4(c), and 4(d). Due to a coupling between the primary system and absorber 
system, the TET or the one-way irreversible energy transfer is not fully established. The results shown 
in Fig. 3 reveal that when the nonlinear vibration absorber is weakly coupled to the primary system, 
it behaves similarly as the NES.  
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Figure 3: Frequency-energy plots for the system with 1 0.3  , (a) low-IE 4(0) 3.773 10E    J; (b) 
medium-IE 4(0) 2.814 10E    J;  (c) medium-high-IE 3(0) 9.800 10E    J; and (d) high-IE 

2(0) 2.763 10E    J. 

 
Figure 4: Frequency-energy plots for the system with 2 0.5  , (a) low-IE 4(0) 3.773 10E    J; (b) 
medium-IE 4(0) 2.814 10E    J;  (c) medium-high-IE 3(0) 9.800 10E    J; and (d) high-IE 

2(0) 2.763 10E    J. 
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4. Conclusion 
This study has investigated vibration suppression and energy harvesting using a nonlinear vi-

bration absorber. The focus has been placed on energy transfer from the primary system to the ab-
sorber system in transient responses. The nonlinear vibration absorber under consideration possesses 
a strong hardening nonlinearity. By fixing the absorber system and varying the stiffness of the primary 
system, three systems, namely weakly coupled, moderately coupled, and strongly coupled, have been 
investigated. The percentage of the instantaneous energy in the absorber has been used as a measure 
for efficacy of energy transfer. The ratio of the accumulated harvested energy to the initial energy has 
been used as a measure for efficacy of energy harvesting. The nonlinear normal mode (NNM) analysis 
has been conducted on the corresponding Hamiltonian system. The frequency-energy plots based on 
the NNM analysis results and wavelet transform spectra of the simulated responses have been used 
to reveal the initial energy dependence and frequency contents in the responses. Based on the study, 
the following observations can be drawn. The weakly coupled system requires a high initial energy 
threshold to achieve the targeted energy transfer (TET). For the simulation cases considered, the en-
ergy threshold required by the weakly coupled system is about 30% greater than that required by the 
moderately coupled system. However, as soon as the initial energy exceeds the energy threshold, the 
weakly coupled system demonstrates a better TET performance than the other two systems, indicated 
by a quick energy localization in the absorber mass. As the result, the absorber can quickly suppress 
the vibration of the primary system and the piezoelectric energy harvester is able to produce a high 
output voltage. For the simulation cases considered, the ratio of the accumulated harvested energy to 
the initial energy from the weakly coupled system is 5 times greater than that from the strongly cou-
pled system. The study has shown that the nonlinear vibration absorber can possess the behaviours 
similar to those of the NES if it is weakly coupled to the primary system.  
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