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This paper presents the dynamic responses of a helical gear pair.  The goal of the research provides 

information for diagnosing the gear faults through examining dynamic signals. Gear faults 

including crack and spalling on one tooth were considered. A finite element software, ANSYS, was 

chosen to calculate the gear mesh stiffness for both an undamaged gear pair and gear pairs with 

faults. A dynamic, lumped-parameter model of gear pairs was then developed for the system 

responses. The presented model considers not only the gear with fault, but also an unbalanced gear. 

Two signal processing methods, fast Fourier analysis and cepstrum analysis, were introduced to 

find the characteristics of the dynamic responses of an undamaged gear pair and gear pairs with 

various faults. The difference between two types of responses was then identified. An experiment 

was conducted to obtain data for comparison.  

This paper concludes that a fault in the gear can result in small components in the frequency 

domain with the interval equal to the rotating speed of the faulted gear. This feature can be further 

clearly identified in the cepstrum domain and can provide a good evidence of a gear pair with faults. 
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1. Introduction 

This paper discusses the dynamic responses and their characteristics of an undamaged pair or 

gear pairs with faults. The gear pair is used in a 150 kW wind turbine. The mesh stiffness of a gear 

pair were obtained by using finite element software. Then, a lumped dynamic model of a gear pair 

was derived. The mesh stiffness was introduced into the model. The dynamic responses of an 

undamaged gear pair and several faulted gear pairs were calculated. The research can distinct the 

difference of the two types of responses and provide diagnosis guidelines. Experimental results 

were also discussed.  

Many references, investigating the dynamics of gear pairs, can be found. An earlier paper [1] 

studied gear dynamics based on experimental observations. The behavior of spur gears at low 

speeds could be described using static transmission error curves which relate to the forces between 

teeth at any instant. Ozguven and Houser [2] reviewed different mathematical models for analyzing 

gears. In two later papers [3,4], theoretical models of the spur and helical gears were developed. 

The static transmission errors of gear pairs of meshing were discussed. The gear dynamics can also 

be found by using the finite element method. Related papers were [5,6,7]. These researchers meshed 

the entire gear pair for the time-consuming analysis. Some researchers then chose to use the finite 

element method only for the mesh stiffness between gears [8]. This approach can also be employed 

in finding the mesh stiffness of damaged gears [8,9]. Chaari, et al., have studied the problems of 

mesh stiffness of gears with faults by using springs connected in parallel and series [10,11]. The 

mesh stiffness can be included in the dynamic model of a gear pair for calculating the dynamic 

response [8]. The resulted time responses were analyzed by different approaches [12,13]. In our 

research, the spectrum and the cepstrum [12] of the dynamic responses were investigated and 

discussed. 
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2. Mesh stiffness 

2.1 Finite element analysis 

A finite element software, ANSYS, was used to calculate the mesh stiffness of a helical gear pair. 

We focused on the difference between the undamaged and the damaged pairs.  

The mesh stiffness between two gears consists several springs connected in series [10,11,14] as 

given in Fig. 1. The total stiffness (kgi) of each gear  (Fig. 1(a)) is the combination of the torsional 

stiffness ki,T of base circle, the bending stiffness ki,B of the tooth, and the stiffness ki,C from Hertz 

contact of two gears where i =1 or 2 is the gear number. If more than one contact pair exists, the 

mesh stiffness becomes the effect of all mesh stiffness (K1 and K2 in Fig. 1(b)) of contact pairs 

connected in series.   

To obtain the static mesh stiffness using ANSYS, one needs two steps. First, choose a fixed 

boundary at gear 1 and apply an external torsional torque to gear 2. The stiffness of gear 1 is then 

determined using 1 1/gk F x  where F is the equivalent applied force and x1 is the normal 

deflection at the contact point of gear 1. In the second step, the fixed boundary and the point of 

applied external torque are reversed to find the stiffness 2gk  of gear 2. Two gear stiffnesses 

combined together give the mesh stiffness Kj.  

 

 

 

 

 

 

 

 

 

Figure 1: Mesh stiffness (a) one contact pair (b) two contact pairs 

We considered a helical gear pair (Fig. 2), used in a 150kW wind turbine, with modulus 8, 

pressure angle 20
o
, and width of tooth 140 mm. The gear has pitch radius 280 mm and 72 teeth. The 

pinion has pitch radius 72 mm and 18 teeth.  

   Figure 2: The helical gear pair 

2.2 Mesh stiffness  

The values of stiffness for various rotating speeds of the gears are given in Fig. 3. The rotating 

speed can affect the stiffness in a nonlinear way because of the nonlinear behavior of Hertz contact. 

Different rotating speeds result in different values of stiffness where a larger speed usually yields 

smaller stiffness probability due to the shorter contacting duration.  

We considered mesh stiffnesses of an undamaged helical gear pair and gear pairs with some 

faults, crack (Fig. 4(a)) and spalling (Fig. 4(b)) in one tooth of the gear. Figure 5 shows the mesh 

stiffness for rotating speed of the gear being 35rpm. In the figure, the horizontal axis is the 
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contacting angle of the gear indicating the complete mesh process of one faulted tooth in the gear. 

Figure 5(a) gives the results with a crack in one tooth of the gear. The stiffness varies with the angle 

and decreases when the crack length increased from 2 mm to 11 mm. The maximum decrease about 

20% occurs when contacting angle is near 3.08
o
.  Figure 5(b) gives the results with spall in one 

tooth. The stiffness becomes smaller only when the angle between 1.6
o
 and 3.6

o
. The maximum 

decrease is about 23% near the middle of the mesh process.  

 

Figure 3: Mesh stiffness from ANSYS for various rotating speeds 

 

Figure 4: Faulted gear (a) with a 5 mm crack (b) with 50% spall  

 
Figure 5: Mesh stiffness from ANSYS for rotating speed 35rpm  

(a) with a crack in one tooth (b) with spall in one tooth 

3. Dynamic model of the helical gear pair 

A lumped model of the helical gear pair was developed for analyzing the dynamic characteristics 

of gear pairs and is shown in Fig. 6 where Fig. 6(a) is the simplified model and Fig. 6(b) is the 

model including the unbalance effect. In this model, we considered the inertia (I1, I2, and m2) of the 

gear and the pinion. The radii of the gear and the pinion are 1 2 and b br r , respectively. The rotation 

angles are 1 2 and    where T1 and T2 are applied torques. The spring 1 1( )k   represents the total 

mesh stiffness of the gear pair and some damping c1 is added. The mesh stiffness in the faulted case 

is used when the faulted tooth of the gear in contact with the pinion. On the contrary, the stiffness in 

the case of no crack is used when the contacting teeth are normal. For including the effect of 

unbalance, we also introduced the translational displacement  2x  of the center of the pinion. 

Besides, an additional spring k2 and a damping c2 are also connected to the pinion. The spring k2 can 



ICSV24, London, 23-27 July 2017 
 

 

4  ICSV24, London, 23-27  July 2017 

be chosen as a function of displacements for evaluating the unbalance effect. The equations of 

motion of the model then becomes 
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One significant parameter in this model is the dynamic transmission error, the equivalent deflection 

of the mesh stiffness, defined by  2 1 1 2 2b bx x r r    . If no unbalance effect considered, one can 

just set 2 0x  . On the contrary, the spring k2 was chosen a function of 2  to induce the time-

dependent spring with the same period as the rotating speed of the pinion for including the effect of 

unbalance of the pinion.  

      
Figure 6: Dynamic model of a gear pair 

(a) model without unbalance (b) model with unbalance in the pinion 

3.1 Dynamic responses  

The Dynamic Transmission Error (DTE) x(t) for different situations are shown in Fig. 7 where 

no unbalance effect is considered. Figure 7(a) gives the Fourier spectrum of a gear pair with no 

damage. Three peaks are corresponding to the mesh frequency fm, defined as the rotating speed 

times the number of teeth of the gear or pinion, and its harmonics. The second harmonic is the most 

significant one mainly due to the waveform of the mesh stiffness [15]. Figure 7(b) gives the Fourier 

spectrum of a gear with 50% spalling. Three peaks are similar to those in Fig. 7(a). However, some 

additional small peaks in the low frequency region are found and their frequency interval is exactly 

the rotating frequency 1f  of the faulted gear. This phenomenon evidences the existence of faults in 

the gear. Figure 7(c) and (d) show the spectrum from gears with cracks. These two figures are also 

similar to Fig. 7 (a) but the small peaks in the low frequency region are more obvious when the 

crack is longer. From the data given in Fig. 7, one cannot easily distinguish whether the gear system 

is damaged or not since the small peaks in the low frequency region are easy to neglect. 

Another spectrum, the cepstrum, was then introduced to identify faulted gears. Cepstrum is de-

fined as 

    
2

log xxC F f  F                                                       (2) 

where Fxx is the power spectrum of the signal f(t) and F  is the Fourier transform operator [12]. 

Therefore, cepstrum is also called “spectrum of spectrum”. Cepstrum can emphasize the small 

frequency interval of peaks or sidebands in the Fourier spectrum. In our research, cepstrum can 

strongly highlight the frequency interval of small peaks in the low frequency region. Figure 8 shows 

the data of cepstrum for various faulted cases without any unbalance. The horizontal axis in Fig. 8 
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is the quefrency with the unit second (s) and Quefrency is the reciprocal of frequency in Hz. Figure 

8(a) shows the cepstrum of a gear pair with no fault where no significant peak observed except 

many peaks in the low quefrency domain. They are corresponding to 1 /m mq f  and its harmonics. 

The related components, corresponding to mesh frequency mf , are inherent in the Fourier spectrum 

in Fig. 7(a). Figure 8(b) gives the cepstrum of a gear with 50% spalling. One can still observe peaks 

in the low quefrency range corresponding to qm and its harmonics. Two more significant peaks, 

corresponding to 1 11 /q f   and the first harmonic, are found and indicate the fault in the gear. 

Note that the spectrum, Fig. 7(b), also shows small and unobvious components with frequency 1f  

in the low frequency region. Figure 8(c) and (d) give the cepstrum of gears with cracks. These 

figures are similar to Fig. 8(a) except some difference in the height of the peaks. Compared all 

figures in Fig.8, any fault in the gear introduces obvious peaks at 1q . On the other hand, the 

cepstrum of systems with various faults are insensitive to the type or the severity of the faults.  

 
Figure 7: Fourier spectrum of DTE x(t) for rotating speed 35rpm  

(a) undamaged gear (b) with 50% spall in one tooth  

(c) with 2 mm crack (d) 11 mm crack  

 
Figure 8: Cepstrum of DTE x(t) for rotating speed 35rpm, balanced system  

(a) undamaged gear (b) with 50% spall in one tooth  

(c) with 2 mm crack (d) 11 mm crack  
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3.2 Dynamic responses of the system with an unbalanced axis 

For studying the dynamic responses of a gear pair with unbalance, we introduced unbalance of 

the pinion by adding one more degree of freedom x2 in the lumped model (Fig. 6(b)). Instead of 

setting an unbalance mass, we added an angle-dependent stiffness 2 2( )k  . This stiffness was chosen 

to become 75%, for a small interval of time, of the original value whenever the opinion makes a 

complete turn. This setting brought an effect similar to unbalance and gave an extra excitation with 

the frequency 2f  same as the rotating speed of the pinion.  

The dynamic responses of a unbalance system are shown in Fig. 9. The spectrum and the 

cepstrum of an undamaged gear pair are in Fig. 9(a) and (c). There is no sign of unbalance, such as 

the peak corresponding to 2f , observed in the spectrum (Fig. 9(a)). However, the peaks 

corresponding to 2 21 /q f   and the harmonics are evident in the cepstrum (Fig. 9(c)). The 

spectrum and the cepstrum of a gear pair with spalling and unbalance are in Fig. 9(b) and (d). The 

spectrum (Fig. 9(b)) seems almost identical to that of an undamaged gear pair where still no peak 

related to unbalance effect. However, the cepstrum (Fig. 9(d)) shows peaks corresponding to both 

1 11 /q f   and 2 21 /q f   along with their harmonics. The peaks associated to 1q  are due to 

the spall in the gear while the ones associated to 2q  resulted from the unbalance. Besides, one 

strong peak corresponding to 12q , the least common multiple of 1q  and 2q , is observed, 

indicating the interaction of spalling and unbalance. 

 
Figure 9: Numerical results of DTE x(t) for rotating speed 35rpm, unbalanced system  

(a) spectrum of undamaged gear (b) spectrum of gear with 50% spall 

(c) cepstrum of undamaged gear (d) cepstrum of gear with 50% spall 

4. Experiment and the results 

An experiment was conducted to provide the comparison. Since the gear pair discussed in the 

previous section is designated to use in an actual wind turbine, the sizes of gears are quite large. 

Smaller helical gears, made by KHK, were then chosen for the experiment. The helical gears are 

with modulus 2, pressure angle 20
o
, and width of tooth 25 mm. The gear has pitch radius 41.41 mm 

and 40 teeth. The pinion has pitch radius 31.06 mm and 30 teeth. A picture of the test machine is 

given in Fig. 10(a) where a blue accelerator was attached to a position near the gear (Fig. 10(b)). 

Serval gears with a crack (Fig. 10(c)) or spalling (Fig. 10(d)) were fabricated for simulating the 

faults.   
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The measured accelerations are shown in Fig. 11. Figures 11(a) and (c) give the spectrum and 

the cepstrum of acceleration of an undamaged gear. One can find a peak and the harmonics, in the 

spectrum (Fig. 11(a)), corresponding to the mesh frequency mf  and also a strong peak which is 

near one of the natural frequencies of the system. On the other hand, in the cepstrum (Fig. 11(c)), 

only peaks related to 1q , 2q , and 12q  were observed. The system without any fault still 

generates peaks near 1q  and 2q  because of the unbalance of both the gear and the pinion 

unfortunately existing in our experiment. Therefore, the signs of faulted gear, the component and 

the harmonics corresponding to frequency 1f , were masked by the unbalance effect and not able 

to be observed in the spectrum and the cepstrum (Fig. 11(b) and (d)) of the gear with spall. 

 

Figure 10: Experiment setup 

(a) The test machine (b) gear, pinion, and the accelerator 

(b) a crack in one tooth (c) spall in one tooth 

 
Figure 11: Experimental results of acceleration for rotating speed 50rpm  

(a) spectrum of undamaged gear (b) spectrum of gear with 25% spall 

(c) cepstrum of undamaged gear (d) cepstrum of gear with 25% spall 

5. Conclusions 

This work studied the dynamic responses of a helical gear pair with a faulted tooth in the gear. 

The faults discussed here were a crack or spalling in the gear. The mesh stiffness of the gear pair 

was calculated by finite element software, ANSYS. A lumped dynamic model, with two rotating 
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inertia connected by the mesh stiffness, of the gear pair was analyzed. The dynamic responses of 

undamaged or faulted systems were solved and discussed. The faulted gear pair can be identified by 

observing the cepstrum of dynamic responses. Experiments were also conducted and the results 

were discussed.   

The following conclusions are reported. 

1. The fault in a tooth of the gear can result in the reduction of mesh stiffness. 

2. The change of mesh stiffness, due to gear fault, yields additional small peaks near the low 

frequency region in the spectrum of dynamic response. The frequency interval of these small 

peaks is the rotating speed of the faulted gear. However, the peaks are too tiny to be clearly 

observed.  

3. In the cepstrum of the dynamic response, a strong peak and its harmonics, corresponding to the 

quefrency related to rotating speed of the faulted gear, are found. These peaks evidence the 

existence of the faulted tooth in the gear. 

4. Unbalance brings additional peaks at the quefrency related to rotating speed of the unbalanced 

gear. 

5. Observing the cepstrum can serve better than the spectrum for finding any faulted condition in 

the gear pair. 
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