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1. INTRODUCTION

For high speed acrocrafl using multistage propellers, one of the most noisy processes is the interaction
of the moving propeller blades with the tip vortex flow shed from a previous propeller stage. When a blade
cuts quickly through a vortex core flow, if the moving blade is not exactly parallel with the circular stream
lines about the vortex core, as is the case in usual situations, the axial component of the vortex core flow is
suddenly stopped by the blade, and the flow must adjust to the sudden change of the boundary constraints.
This interruption of the streaming vortex core flow by the blade will inevitably involve compressive waves
that propagate as sound to the far field. We believe that this is very likely to be an important mechanism
by which high speed propellers generate noise, and the aim of this paper is to help understand better this
mechanism. We choose to work with a canonical problem which locally models the interaction between a high
speed propeller blade and a streaming vortex flow. We examine the sound generated from the interruption of
a steady eylindrical flow by an aerofoil moving supersonically in the plane perpendicular to the steady flow.
This is of course an enormously simplified model of the real situation, but we believe that it containa the
essential features of the problem of propeller noise generauon by flow-blade interactions, while being simple
enough to be analysed exactly.

\We examine the sound pressures produced by a semi-infinite aerofoil in section 2. The sound is generated
in the form of a pressure pulse of finile duration. In directions other than the Mach angle, the pulse is
switched on and off at zero amplitude, and has a maximum in the middle, which decreases due to spherical
spreading inversely in proportion to ithe distance the pulse travels. The principal sound is launched in the
Mach wave direction where the pressure pulse has sharp faces and constant amplitude; it reaches the far field
without attenuation according to linear theory. For a real propeller system, this shock-like intense sound will
of course undertake refractive interactions with the main inhomogeneous propulsion flow, and probably with
other blades of the propeller system, before it reaches the distant observer, but those interactions may be
regarded as the second stage of the complete flow-blade interaction sound problem which mainly concerns the
propagalion aspects, and may be considered separately from the generation problem.

Energetics of the flow-aerofoil interaction problem is examined in the subsequent sections, which reveals
interesting results. In section 3, we examine the energy carried by the pressure pulse of the semi-infinite
aerofoil. It will be shown that the sound energy is scattered from the steady jet flow, it being precisely
equal to the loss of kinetic energy of the jet during the interruption process. For a semi-infinite serofoil, the
sound energy iz independent of the supersonic aerofoil speed, and can be caleulated by a very simple energy
conservation argument. The scattered energy is also evaluated from the far field pressures, which confirms the
result obtained through energy conservation arguments, and hence, demonsirates that there is no force at the
supersonic leading edge which could significantly affect the acoustic radiation. The situation of finite chord ..
aerofoils is considered in section 4. In this case, the radiated energy is a function of the serofoil Mach number
for small chord, but approaches the value for semi-infinite aerofoils when the chord is larger than the diameter
of the cylindrical flow times M + 1. For an aerofoil of fixed chord, the scaltered energy is proportional to the
inverse of the aerofoil Mach number at high supersonic speeds; the higher the speed, the quister will be the
sound of a supersonic propeller.

2. SOUND BY A SEMI-INFINITE AEROFOIL

We consider & semi-infinite aerofoil moving supersonically in its own plane perpendicular to a uniform
cylindrical flow of radius a. The coordinates system is chosen in such a way that the aerofoil lies in the plane
zy = 0, with its leading edge being parallel to the z; axis and advancing at speed cM, ¢ being the constant
sound speed and M > 1. The leading edge of the acroloil coincides with the zz axis at time t = 0. The
cylindrical flow has a uniform velocity ug in the negative z3 direction, and its axis is chosen to be the z3 axis.
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The situation is illustrated in figure 1. We consider the sound generated linearly by the interruption of the flow
by the moving aerofoil. The total flow feld can then be regarded as the linear superposition of the cylindrical
flow and an induced disturbance velocity field u;. Due to the symmetrical geometry, it is sufficient Lo consider
only the region z3 > 0. The sound pressure can be conveniently calculated through the use of Kirchhoff's
thecrem {1], whicl relates the acoustic pressure at any cbservation position to the velocity distribution on the
plane r3 =0, namely,

_ ﬂn__a_ ua(y, 7)

where gg is the constant mean density, ua denotes the r3-component of the induced velocity field u; and the
square brackets have the conventional retarded time implication, the quantity enclosed being evaluated al the
retarded time * = { — |¥ — x|/e. The integrand of (2.1) is to be evaluated at y3 = 0, where the distribution of

tty can be specified as
valy, ) = woH(s® = R2)H (M1 = Mly —x| = 1), (22)

where # is the Heaviside step function. This specification follows from the fact that the induced \'!elocity
vanishes ahead of the leading edge of the aerofoil, because the leading edge moves faster than sound, while
on the aerofoil surface, it also vanishes except in the region covered by the cylindrical flow, where it must be
opposite to the flow velocity, to comply with the boundary condition that the total normal velotity oo the
acrofoil surface is zero. On substituting (2.2} inte (2.1) and carrying out the partial derivative with respect
to time ¢ by noticing that the gradient of ithe Heaviside function is the Dirac delta function, we find that

= fotocM 1 2_ — My — x| - 3 )d?
p(x,t) = 27 j’- e le(a V2 )6{eMi— Mly — x| = w1 )d?pa. (2.3)
The §-function can be utilised to evaluate the ya-integral. When this is done, we find that

plx, 1) = £ H(a® -y} —4}) + H(a® = 4} ~ 3?2)
T T Sy, (s — M) - M2 [y = 1) + 23))/2

x H(cMt — y)H [(y1 — eM2)® = M?[(z) — »)* + 23)] dyn, (24)
where ¥ are determined by solving the equation cMt — M|y — x| — 3 = 0 for ya, that is,
1
ve = 22 o {ln - oMl - MPl(w - =)+ A1 (23)
The determination of ys also results in the last two Heaviside functions in (2.4); when cither of the arguments

of the two is negative, cMt — M|y — x| — 3y = 0 hes no real solution for yz, and hence the integral vanighes.
Now, it can be recognised that (2.4) can be integrated Lo inverse sine functions (e.g. [2], formula 2.261),

lll7
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Figure 1. The geometry and the coordinate system of the madel problem.
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2 _ - _ I
potgeM arcsin (M2 =11 - M(Mz; - ct)

Trv M= 1 Mz, — cM1)? = (M7 = 1),:3!]119 . ’ (2.6)

pix.1) =
the integration bounds A and B being determined by the Heaviside functions in the integrand of (2.4}, In
doing 50, quartic equations arising from the vanishing of the srguments of the Heaviside functions must be
solved, which is algebraically complicated and ledious, except in the case of 2z = 0 which we will examine in
the next section. It is straightforward, however, to solve these equations numerically. The sound pressure can
then be obtained according to {2.6).
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Figure 2. Sound pressures caleulated according to (2.6) with M = 4.0 in the direction
¢ =0 = nf4. The 1/r decrease is illustrated by the dash curve.
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Figure 3. A constant pressure pulse is launched in the Mach wave direction
¢ =0 and 8 = aresin{1/M}, which has a magnitude of 1/vM7 = 1.

Ploited in figure 2 are the sound pressures as a function of the radial position r for ¢ = § = x/4, where
(r,4,8) is the spherical coordinates defined by zy = reinfcosd, 23 = rgindsin ¢ and z3 = rcosd. This figure
is representative of any directions other than that along the Mach angle. Apparently, the sound is generated
in the form of a pressure pulse that is switched on and off at zero amplitude. The maximum amplilude occurs
in the middle of the pulse. As time increases, the wave form propagates away al conslant speed ¢ with its
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maximum amplitude decresing according to 1/r, or, equivalently 1/ct, obviously due ic spherical spreading,
which is illustrated in figure 2 by the dash curve. The pressure vs radius curves are all smooth and rounded in
the far field, but have sharp faces in the near field (the curves corresponding 1o eAft/a = 2.0 and 4.0) when the
leading edge of the aerofoil is within the cylindrical flow, because the pressure perturbations in this case jump
from zero to a constant value across the edge of the Mach cone from the leading edge. As time ¢ increases, the
initial rectangular pressure form travels Lo the far field with its height decreasing due to spherical spreading.
. That decrease staris at the rear face of the pressure pulse, so that, when cMitfa = 4.0, only a very narrow
part close to the front face of the injtial rectangular wave form still remains its initial height, while most of
the pulse has greatly decreased in amphtude This gives the peak (of finite height) in the second curve at
eMtfa = 4.0 in figure 2.

In the Mach wave direction dead ahead of the moving aerofoil, thet is , in the direction of ¢ = 0 and
sinf = 1/M, the amplitude of the pressure pulse is unaffected by spherical spreading . This indicates that a
pressure pulse of constant amplitude is launched in this direction. This situation is shown in figure 3. It is
clear that a sharp fronted pulse is generated by the impact on the flow of the moving aerofoil. This pressure
pulse propagates along the Mach wave direction at speed ¢ without attenuation. The rear face of the wave
form also becomes sharp as it travels away. An intense bang will be heard by distant observers in this Mach
wave direction.

3. THE SCATTERED ENERGY

The sound energy scattered by the moving aerofoil can be found by considering the energy loss of the
total flow during the interruption process, that is, by calculating the difference between the energy contained
in the flow before the serofoil cuts the cylindrical flow and that remaining in the field after the interruption
process. That energy difference must have escaped to infinity as sound since the dragless aerofoil moves in its
own plane and does no work. It is evident that the leading edge of the supersonically moving aerofoil does not
experience any suction force which could significantly affect the acoustic radiation, as it might do in subsconic
situations [3], because the supersonic leading edge cannot be affected by the disturbances generated by the
leading edge itself. It is also evident that no energy is radiated from the aerofoil surface because the energy
flux on the plane 23 = 0, in which the aerofoil lies, is identically zero, due to the fact that the total normal
velocitly on the aercfoil surface (r; < cM{) always vanishes and the pressure perturbations are always zero
shead of the leading edge {zy > cM1) that advances at supersonic speed, Hence the total energy (the acoustic
and the kinetic energy) in the field is consetved during the whole process of interruption of the steady flow by
the semi-infinite aerofoil. The aerofeil generates sound by scatlering the jel's energy into sound, the strength
of which can be evaluated by energy conservation arguments.

Suppose that the main flow, of velocity v;(x) with 8v; /8 =0, is mterrupted by the azrofoil, producing
a disturbance velocity potential ¢, so that the toial velocity of the interrupted flow is v; + 84,/82;. In cur
particular case where the jet flow is perpendicular to the moving aerofoil, % only has one component in the
negative ry direction (noting that the flow does not have a uniform velocity component in the z; direction).
At time ¢ = —oo when the aerofoil is still far away from the flow v;, there is no disturbance in the field and
the total energy contained in the flow is given by

Bwn= [ Sootmal d'x, @3.1)

where the volume integral is over the entire space. As time £ — 400, the leading edge of the semi-infinite
aerofoil will move far downstream. The flow is then effeciively bounded by an infinite plane boundary at
z3 = 0; the interrupted flow will eventually settle down to a steady state with the induced velocity potential
determined by the Laplace equation V?¢ = 0 and the boundary ¢ondition That the total normal velocity on
the aerofeil surface must vanish.

—==-v3 on x3=0 (3.2)

then imposes the solution for ¢ [5]

_L vs(y) 2y, .
$= O xld (33)
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This is the near field motion which does not die out with time, so that the total energy remaining in the field -
at time t — +oo is

2
Eio = f %pu [v.- + g:;-] dx, 3.4)

By making use of the relations 8v; /82, = 0 and V¢ = 0, this can be rewritien as
_ 1 i) 8¢
Ejw=FE_o+ 2.Pofa—:l_ (%vi + ¢6_z.-) dx, (3.5)

where E- o is the energy in the flow at time ¢ — —co and is given by (3.1). The scattered acoustic energy E,
can now be found by ealculating the difference between E_; and Eyq.

E,=E_» - Eyea = PD/ (2¢"3 + ¢g§:) dzzm (36)

Ta

where the last step follows from applying the divergence theorem to the volume integral in {3.5). In doing
so, we have utilized the symmetrical geometry of the problem and performed the volume integral only in the
- upper half space with the result doubled. On the surface of the aerofoil, we have the boundary condition (3.2)
for the normal velocity and (3.3) for the velocily potential, so that for any initially steady velacity field v,
the energy scattered into sound by a semi-infinite aerofoil is

Ba= g | [ Sy, (37)

This result is derived without any particular specification of either the value of the supersonic speed
of the aercfoil or the particular distribution of the basic flow field v;, provided that it is steady with finite
dimensions in the plane in which the aerofoil moves. It can be seen from {3.7) that the scattered sound energy
is independent of the Mach number of the supersonic aerofoil. For our uniform cylindrical flow, we have

us{x) = —uoH(a? - z2). ' L (39)
Hence, (3.7) becomes s 2 .
-1 H{a? — 25)H(a® — y5) ,
Ba= proug -/z. -/r. [#a — zal “zyadzzu- (3.9)

The zo-integral can be carried out immediately {e.g. [5]),

B~ 22) oy, - 408 ("’T“L) . ' (3.10)

a {va — 2al

where E{z} is the complete elliptic integral of the second kind. Thus, (3.9) yields

2
E. = 8% j E (1!—') H(a® = )0 = Soode?, @.11)

where the last step is derived by changing the integration vatiables to polar coordinates and using (8.112) and
{6.132) of {2]. This is the sound energy scatiered by the semi-infinite aerofoil, which is only related 1o the
parameters of the cylindrical jet flow and is independent of the supersonic aerofoil speed. This result, derived
through arguments of energy conservation, ¢an also be cbtained directly from the far field acoustic motions,
which we do next. We start with the far field acoustic pressure perturbations that can be found from (2.3) by
approximating 1]y — x| by 1/|x| and |y = x| by x| — yoZ,. Thus we have

. .
o BteC j Hia? = y2)6(cMt = 31 = MIx}+ MEayo)d?yo,
27lx| Yo
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ugeM .

The total acoustic energy can be found by integrating the square of this resuit, divided by poe, which gives
the far field energy flux in the radial direction, over a spherical surface of large radius |x| from time ¢ — —co
to t — +co. This yields the result for the sound energy E,,

_ Qpgui M
o= (2r)3

/ H(a® -2 )H (0% — 22 ) e HMEe (re—sa)- (=) 5in Bdfdpdkd yad" 2o, (312)
where the @-integral is from 0 to 7/2 and that with respect to ¢ from 0 to 27. Other integrals are all performed
from —oa to +00. Now we can carry out the ¢-integral with the result expressed in terms of a Bessel function
which can then be integrated with respeet to #, according to (6.554) of 2], to give

Ix prf2 : le -z I)
iEME.(Va—1a) gin fdBdd = 2 sin(AMlyq = zal)
-/o '[0 € sin [ T M ya — 7a]

Substituting this into (3.12), and performing the k-integral, we find that

2
— PoYg _ h-—n L h—a
E, = £ /h]‘.[ssn(ly? ol + B2 )+sgn(|y, ol - B2 )]

H(a? - ya)H(a® - 30)
X |ya — Zni a y,d’za.

Since the Mach oumber M is larger than one, the srguments of both the two sign functions in the integrand
are always positive. Hence the quantity enclosed in the aquare brackets is identically equal to 2. This result
ta then seen to be exactly the same as (3.9), and hence (3.11), the result derived through energy conservation
arguments. The agreement of the two calculations also gives evidence that the supersonic leading edge is
indeed dragless, because the far field calculation does not involve any assumption at the leading edge, but
mives the same result as that of the energy conservation arguments which presume a dragless leading edge.

4. ENERGY SCATTERED BY A FINITE CHORD AEROQFOIL

In practice, aerofoils have finite chord and it is obvicusly of interest to see whether the finiteness of the
aerofoils can significantly affect the generated sound. We consider an nerofoil of finite chord 26 that moves
supersonically in the plane zs = 0. Since the disturbances caused by the trailing edge of the supersonic acrofoil
cannot affect the field ahead of it, the pressure fluctuations on the finite aerofoil surface are precigely the same
as those on a semi-infinite aerofoil which is given by (2.3) with zs = 0. Because the pressure fluctuations
vanish elsewhere in the plane £3 = 0 due to symmetry, (2.3) can be utilised to find the pressure perturbations
in the field according to Kirchhofl’s theorem, and hence, the acoustic energy radiated to infinity. The total
energy can also be calculated through the evaluation of the energy across the plane control surface just above
the toordinate plage £3 = 0. In this event, the velocity distribution on the serofoil has the same specification
as that in the semi-infinite case, both being determined according to the vanishing normal velocity boundary
condition. Behind the trailing edge, the velocity distribution is unknown, but this does not affect the energy
calculation, because the pressure fluctuations there always vanish due to symmetry, and so too does the energy
flux. Hente the energy flux in the plane z3 = 0 for this finite chord situation is given by

uo[H(cMt — z,) — H(cMt -z, — 25)]

times the pressure (2.8). Integrating the result over iime ¢ and space za, We derive an expression

2 2 _ .32 2 _ g7
Ey= — j e —salie ZD)HI% -(n—z1) - Mlye - =c|1fyad’xm (4.1)
L Vo %a lyﬁr —2°|
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where we have multiplied the result by two to take account of the cnergy into the lower half space, so that E) is
the total energy produced by the aerofoil. The integrals in (4.1} can be evaluated by changing the integration
variables r, and ya into polar coordinates, which transfer (4.1) to

2
Ey = p;:" /H[a’ = &7 = A% = 2k) cos(a — B)|H[26 = k{cosa + MYAdAdkdadg, {4.2)
where both the a-integral and the A-integral are performed from 0 to 2r, the A-integration is from 0 to a and
that with respect to k along the positive k-axis. In (4.2), we can replace cos(a - 5) in the first Heaviside
function by cos 3, because the f-integral is over a complete period. Thus, the a-integral and the A-integral can
be evaluated separately, by utilizing respectively the two Heaviside functions. The result can then be further

cnlenlated as

16 wia® when =< 1 < L
%”“0 , . blM+1 M]-l’
1 1.3 e . 2
Ey= _S‘Pﬂuod 1+ Q:af(l)] when M+1 < Y < M-1 (4-3)
16

13 ] 1 1 a
LA - s 1 1t _a
3 Potas” |1+ 520f (a(M—n)] when T <W-1%%
where f(z) is a complicated combination of elementary functions and elliptic functions, but it can also be
expressed by a simple integral as

!(z)zj' Sparcecsn— 2+ P17

"aMmbla- et - (M-

with the lower limit of integration given by bfa(M + 1).

These results are shown in figure 4, where the energy produced by the finite chord aerofoil is plotted
as & function of the aerofoil Mach number M. Apparently, the upper bound of the radiated energy is that
of a semi-infinite aerofoil. This maximum energy is achieved, not as a limiting process as the aerofoil chord
tends to infinity, but at a condition b > a{M + 1), a9 indicated by (4.3). For aerofoils with chord larger than
2a(M + 1), the radiated energy is independent on the aerofoil Mach number just as a semi-infinite aerofoil.
As analysed in section 4, the supersonic trailing edge in this case of large chord aerofoil behaves in the same
way as that of the semi-infinite plane, and has no influence on the flow field.

6 L L] L) T

exact calculation (4.3) -
~=——~asymptotic result (4.6)

Eyfpouia®

2e= inp

40 60 80 100
acrofoil Mach number M
Figure 4. The seattered energy by a finite chord aercfoil.

For a fixed acrofoil chiord, the radiated energy decreases as the Mach number Af increases, indicating that
the fuster the supersonic aerofoil moves, the quieter the sound field will be. The decrease of E ¢an be shown
to be 1711 at high valurs of X/, It is straightforward to demanstrate this by evaluating (1.1} in the limiting
cuge of M 3> 1. The rq-integral can be performed, in this event, as

n

[ 1SS0 = 500+ Sulad (51 = Sol, e
0 .
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where Si{a) = yfa? = y2sin®(a = 3) ~ |valcos(e — B), So{e) = 2b/(M + cosa) and 8 = arctan(y2/;)-
Apparently, H{Sq — $)) vanishes and H(5; — 5p) — 1 in the case of M 3> 1. Hence, (4.4) reduces to

% dxb
—_—da = . .
o M+:°Ma M= (a5)
Equations (4.5) and (4.1) then yield that, for M 3 1,
2,2
E, ~ Z1pou5a70 (4.6)

M

This result clearly reveals a 1/M dependence of the radiated energy; it decreases as the supersonic aerofoil
speed increases, mainly because of the reducing duration of the pressure pulse at high supersonic speed. The
asymptetic solution (4.6) is compared, in figure 4, with the exact calculations of (4.3). The result (4.6) also
predicts a linear relation between the energy and the chord of the acrofoil. The linear increase of sound with
the dimension of the aerofoil is true only for the case of high supersonic speed and moderate chord; for fixed
M and very large b, (4.4) reduces to (3.10) instead of (4.5), because H(Sp — 5;) would then be equal to unity
and H(S) — S) vanishes, and the energy is given in this case by the first line of (4.3).

5. CONCLUSIONS

We have examined a flow-aerofoil interaction problem. The sound generated by a semi-infinite plane
with a leading edge moving supersonically through and interrupting a uniform cylindrical flow has been found
exactly. The generated sound takes the form of a pressure pulse of finite duration. In directions other than
the Mach wave direction, the pressure pulse is swiiched on and off at zero amplitude, and has a maximum
in the middle, which decreases, due to spherical spreading, inversely in proportion to the distance that the
pulse travels. Along the Mach angle, it has been found that the pulse has sharp faces (both front and rear}
and constant amplitude; it reaches distant observers without attenuation according to liner theory. It is the
noisiest sound from the flow-aerofoil interaction and is, we believe, likely to be one of the most important
aspects concerning the noise of aircraft using supersonic propellers.

The energy radiated to infinity has been calculated explicitly. For a semi-infinite aerofoil, the sound is
scattered from the uniform jet flow; the lose of kinetic energy of the jet flow during the whole interruption
process has been shown to be precisely equal to the energy radiated as sound to infinity. The scattered acoustic
energy has been shown to be independent of the Mach number at which the supersonic semi-infinite plane
moves. By calculating the sound energy radiated to infinity and considering the conservation of energy, it has
been demonstrated that the supersonically moving aerofoil does not experience any force whose work might
affect the sound generation process. For aerofoils of finite chord, it has been shown that the radiated energy
is a function of the aerofoil Mach number for small chord, but approaches the value for semi-infinite aerofoils
when the chord is larger than the diameter of the cylindrical flow times M + 1. At high supersomic speeds,
finite chord asrofoils radiate energy that decreases inversely as the Mach number of the finite chord aerofoil
increases; the higher the speed, the quieter will be the sound generated as @ result of flow scattering by a finite
chord supersonic aerofoil.
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