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1. INTRODUCTION

For high speed aerocrafl. using multistage propellers, one of the most hoisy processes is the interaction
of the moving propeller blades with the tip vortex flow shed from a previous propeller staget \Vhen a blade
cuts quickly through a vortex core flow, if the moving blade is not exactly parallel with the circular stream

lines about the vortex core, as is the case in usual situations, the axial component of the vortex core flow is
suddenly stopped by the blade, and the flow must adjust to the sudden change of the boundary constraints.
This interruption of the streaming vortex core flow by the blade will inevitably involve compressive waves

that propagate as sound to the far field. We believe that this is very likely to be an important mechanism
by which high speed propellers generate noise. and the aim of this paper is to help understand better this
mechanism. We choose to work with a canonical problem which locally models the interaction between a high

speed propeller blade and a streaming vortex flow. We examine the sound generated from the interruption of
a steady cylindrical flow by anaerofoil moving supersonically in the plane perpendicular to the steady flow.
This is of course an enormously simplified model of the real situation. but we believe that it contains the
essential features of the problem of propeller noise generation by flow-blade interactions, while being simple
enough to bc analysed exactly.

We examine the sound pressures produced bya semi~infinite aerot‘oil in section 2. The sound is generated
in the form of a pressure pulse of finite duration. In directions other than the Mach angle, the pulse is

switched on and off at zero amplitude, and has a maximum in the middle, which decreases due to spherical
spreading inversely in proportion to the distance the pulse travels. The principal sound is launched in the
Mach wave direction where the pressure pulse has sharp faces and constant amplitude; it reaches the far field
without attenuation according to linear theory. For a real propeller system, this shock-like intense sound will
of course undertake refractive interactions with the main inhomogeneous propulsion flow, and probably with
other blades of the propeller system, before it reaches the distant observer, but these interactions may be

regarded as the second stage of the complete flow-blade interaction sound problem which mainly concerns the
propagation aspects, and may be considered separately from the generation problem.

Energetics of the flaw-aerofoil interaction problem is examined in the subsequent sections, which reveals
interesting results. In section 3, we examine the energy carried by the pressure pulse of the semi-infinite
aerofoil. It will be shown that the sound energy is scattered from the steady jet flow. it being precisely
equal to the loss of kinetic energy of the jet during the interruption procu. For a semi-infinite aerofoil. the

sound energy is independent of the supersonic aerofoil speed, and can be calculated by a very simple energy
conservation argument. The scattered energy is also evaluated from the far field pressures. which confirms the
result obtained through energy conservation arguments, and hence, demonstrate that there is no force at the
supersonic leading edge which could significantly afl'ect the acoustic radiation. The situation of finite chord
aerofoils is considered in section 4. In this use, the radiated energy is a function of the aeroi'oil Mach number ‘
for small chord, but approaches the value for semi-infinite aerofoils when the chord 'u larger than the diameter

of the cylindrical flow times M + I. For an aerofoil of fixed chord, the scattered energ is proportional to the

inverse of the aerofoil Mach number at high supersonic speeds; the higher the speed. the quieter will be the
sound of a supersonic propeller.

2. SOUND BY A SEMI-INFINITE AEROFOIL

We consider a semi-infinite aeroi'oil moving supersonically in its own plane perpendicular to a uniform

cylindrical flow of radius a. The coordinates system is chosen in such away that the aeroi'oil lies in the plane

2, = 0, With its leading edge being parallel to the z; axis and advancing at speed cM. c being the constant

sound speed and M > 1. The leading edge of the aerofoil coincides with the.“ axis at time t = 0. The

cylindrical How has a uniform velocity un in the negative :3 direction, and its axis is chosen to be the z; axis.
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The situation is illustrated in figure 1. We consider the sound generated linearly by the interruption ofthe flow

by the moving aerofoil. The total flow field can then be regarded as the linear superposition of the cylindrical

flow and an induced disturbance velocity field u.-. Due to the symmetrical geometry. it is sufficient to consider

only the region a; 2 0. The sound pressure can be conveniently calculated through the use of Kirchhoff's

theorem [1]. which relates the acoustic pressure at any observation position to the velocity distribution on the

plane :5 = 0. namely,
_ p 3 flaw-T)

where pg is the constant mean density. n; denotes the es-component of the induced velocity field u.- and the

square brackets have the conventional retarded time implication. the quantity enclosed being evaluated at the

retarded time r = t— |y — xI/c. The integrand of (2.1) is to be evaluated at ya = 0. where the distribution of

u; can be specified as

“30.7)=un”(fl:-yz)H(°1‘“—M|¥-x|-w). (2.2)

where H is the Heaviside step function. This specification follows from the fact that the induced v’elocity

vanishes ahead of the leading edge of the aerofoil. because the leading edge mova faster than sound. while

on the aerofoil surface. it also vanishes except in the region covered by the cylindrical flow, where it must he

opposite to the flow velocity. to comply with the boundary condition that the total normal velocity on the

aerofoil surface is zero. 0n substituting (21) into (2‘1) and carrying out the partial derivative with respect

to time t by noticing that the gradient of the Heaviside function is the Dirac delta function. we find that

 

i
pom) = I, _ leu' — 1'1)“th — my — xl - mm (2.3)

Y.

The 6-function can be utilised to evaluate the yz-integral. When this is done. we find that

fix 1)_ pm: H(a'—v§—yi)+H(u‘-vi-u3)
' _ 2*, ..{(vx-tMi)’-M’[(Vi-zi)’+x§ll'“

x 11(th — y.)H [(y, — cm)“ — M‘uz. — m)2 + 25]] an. (2.4)

where y; are determined by solving the equation th — M|y — xI — y; = 0 for m. that is.

V; = z: a g {(n — th)’ — M’Kyi —=.)’ + :31}‘"- (2-5)

The determination of 34; aka results in the last two Heaviside functions in (2.4); when either of the argumcnts

of the two is negative. th — Mly - x] — y, = 0 has no real solution [0: ya. and hence the integral vanishes

Now. it can be recognised that (2.4) can be integrated to inverse sine functions (eg [2]. formula 210]).

Ill     

  

/_

1)

cylindrical flou-

Figure l. The geometry and the coordinate system of the modcl problem.
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pi“) = 2f\/M’ — I M[(2| — th)’ — (M’_ nag-1177’ "

the integration bounds A and B being determined by the Heaviside functions in the integrand of (2.4). in

doing so. quartic equations arising from the vanishing of the arguments of the Heaviside functions must be

solved. Which is algebraically complicated and tedious, except in the case ole, = 0 which we will examine in

the next section. it is straightforward. however. to solve these equations numerically. The sound pressure can

then be obtained according to (2.6).

(2-6)

P/PouacM

 

chla

Figure 2. Sound pressures calculated according to (2.6) with M = 4.0 in the direction
4 = 9 = 11/4. The 1/r decrease is illustrated by the dash curve.

 

Figure 3. A constant pressure pulse is launched in the Mach wave direction

o = 0 and 9 = arcsin(l/M). which has a magnitude of l/ilMI — 1.

Plotted in figure 2 are the sound pressures as a function of the radial position r {or .35 = 5 = 1/4. where

(r. d. 9) is the spherical wordinata defined by :1 = rsinfloosé. t: = rainflsin d and z; = r c055. Th'u figure

is representative of any directions other than that along the Mach angle. Apparently. the sound is generated

in the form oi’a pressure pulse that is switched on and DH at zero amplitude. The maximum amplitude occurs

in the middle of the pulse. A: time increases, the wave form propagates away at constant speed c with its
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maximum amplitude decresing according to l/r, or, equivalently l/ct. obviously due to spherical spreading,
which is illustrated in figure 2 by the dash curve. The pressure vs radius curves are all smooth and rounded in
the far field, but have sharp faces in the near field (the curves corresponding to cMi/o = 2.0 and 4.0) when the
leading edge of the aeroloil is within the cylindrical flow, because the pressure perturbations in this case jump
from zero toa constant value across the edge ofthe Mach cone from the leading edge. As time 1 increases, the
initial rectangular pressure form travels to the far field with iLs height decreasing due to spherical spreading.

- That decrease starts at the rear face of the pressure pulse. so that, when th/s = 4.0, only a very narrow
part close to the front face of the initial rectangular wave form still remains its initial height, while most of
the pulse has greatly decreased in amplitude. This gives the peak (of finite height) in the second curve at
ch/o = 4.0 in figure 2.

In the Mach wave direction dead ahead of the moving aerofoil, that is , in the direction of d = 0 and
sinfi = l/M, the amplitude of the preure pulse is unaffected by spherical spreading . This indicates that a

pressure pulse of constant amplitude is launched in this direction This situation is shown in figure 3. It is
clear that a sharp fronted pulse is generated by the impact on the flow of the moving serofoil. This pressure
pulse propagates along the Mach wave direction at speed c without attenuation. The rear face of the wave
form also becomes sharp as it travels away. An intense bang will be heard by distant observers in this Mach
wave direction.

3. THE SCATTERED ENERGY

The sound energy scattered by the moving aerofoil can be found by considering the energy loss of the
total flow during the interruption process. that is, by calculating the diflerence between the energy contained
in the flow before the aerofnil cuts the cylindrical flow and that remaining in the field afiLer the interruption
process. That energy difference must have escaped to infinity as sound since the dragless aeroi'oil moves in its

own plane and does m: worlr. It is evident that the leading edge ofthe supersonically moving aerol'oil does not
experience any suction force which could significantly affect the acoustic radiation, as it might do in subsonic
situations [3], because the supersonic leading edge cannot be affected by the disturbances generated by the
leading edge itself. It is also evident that no energy is radiated from the aerofoil surface because the energy
flux on the plane 2, = 0, in which the serofoil lies. is identically zero, due to the fact that the total normal

velocity on the aeroi‘oil surface (:1 < M“) always vanishes and the pressure perturbations are always zero
ahead of the leading edge (:1 > th) that advances at supersonic speed. Hence the total energy (the acoustic
and the kinetic energy) in the field is conserved during the whole procea of interruption of the steady flow by

the semi-infinite aerol'oil. The aeroi'oil generates sound by scattering the jet's energy into sound, the strength

of which canbe evaluated by energy conservation arguments. V

Suppose that the main flow, of velocity ur(x) with Din/0:; = 0. is interrupted by the aerofoil, producing
a disturbance velocity potential 4, so that the_ total velocity of the interrupted flow is u,- + 8¢/Bz;. In our

particular case where the jet flow is perpendicular to the moving aerol‘oil. in only has one component in the

negathe :3 direction (noting that the flow doe not have a uniform velocity component in the z, direction).

At time I —‘ —oo when the aerofoil is still far away from the flow u.-, there is no disturbance in the field and

the total energy contained in the flow is given by

lE-” = / Epo[w(x)]’d’x, (3.1)

Where the volume integral is over the entire space. As time t —. +oo, the leading edge of the semi-infinite

aerofoil will move far downstream. The flow is then efi‘ectively bounded by an infinite plane boundary at

z, = 0; the interrupted flow will eventually settle down to a steady state with the induced velocity potential

determined by the Laplace equation V'p = 0 and the boundary condition that the total normal velocity on

the aerol‘oil surface must vanish. ad

 

a _. —u; on :3 = 0 (3.2)

then imposes the solution for d [5] ( )
_ i Us y 2 3 3L2,], Iy_xldya. (l)
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This is the near field motion which does not die out with time, so that the total energy remaining in the field

at time 1 —~ +oo is 2
5+, = / gm [v.- + dax, (3.4)

By making use of the relations Gui/0.1:; = 0 and V’d = 0, this can be rewritten as

_ 1 6 5d
E+oo — 5—» + Elm/87', (2401+ daxr (3.5)

where E.w is the energy in the flow at time t —o —oo and is given by (3.1). The scattered acoustic energy E.

can now be found by calculating the diiference between E-” and 5+”.

E.=E_,.-;E+m =Pof
1.
(2m + a%) d’za. (3.6)

where the last step follows from applying the divergence theorem to the volume integral in (3.5). In doing

so, we have utilized the symmetrical geometry of the problem and performed the Volume integral only in the

upper half space With the result doubled. On the surface of the aerofoil, we have the boundary condition (3.2)

for the normal velocity and (3.3) for the velocity potential, so that for any initially steady velocity field u.-.

the energy scattered into sound by a semi-infinite aerofoil is

E. = gim- jh Wilma?“ (3.7)

This result is derived without any particular specification of either the value of the supersonic speed

of the aerofoil or the particular distribution of the basic flow field 11,-, provided that it is steady With finite

dimensions in the plane in which the aerofoil moves. It can be seen fi'om (3.7) that the scattered sound energy

is independent of the Mach number of the supersonic aerofoil. For our uniform cylindrical flow, we have

vs(x) = warm" — =3.)- ' (33)
Hence, (3.7) becomes

/ Wdiyudfim (33)
9t

_ 1 2

E“ ‘ 21%]. It. — 2.1
The ca-integral can be carried out immediately (e.g. [5]).

H(u’—z§) , _ M .
“ —————lya_2n| d 2,. —4aE( a ). (3.10)

where E(:) is the complete elliptic integral of the second kind. Thus. (3.9) yields

E. = 2—“;“3 f.E H(fl' - yzld‘ua = gpougn‘. (3‘11)

where the last step is derived by changing the integration variaqu to polar coordinates and using (8.11?) and

(6.132) of This is the sound energy scattered by the semi-infinite aerofoil, which is only related to the

parameters of the cylindrical jet flow and is independent of the supersonic aerofoil speed. This result, derived

through arguments of energy conservation, can also be obtained directly from the far field acoustic motions,

which we do next. We start with the far field acoustic pressure perturbations that can be found from (2.3) by

approximating 1/ly — x| by 1/le and |y — x| by lxI — yaia. Thus we have

flouotM
lexl y,
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povacM / f a 2 man. —M|x|+Me ) 2=——— 1111— e " "'d I”:-(Qflalxl y. k ( Va). Va

The total acoustic energy can he found by integrating the square of this result, divided by poc, which gives

the far field energy flux in the radial direction, over a spherical surface of large radius Ix] from time t —v —oo

to t —4 +oo. This yields the result for the sound energy E.,

2 2 .
E. = 42%/H(s’—y§)H(a’—1:)e'klM"(""-)‘(""")] sin Masts/ad’me (3.12)

where the 0-integral is from U to 1/2 and that With respect to o from 0 to 211. Other integrals are all performed

from —oo to +oot Now we can carry out thed-integral with the result exprased in terms ofa Bessel function

which can then be integrated With respect to 9, according to (6.554) of [2], to give

2. r]: V - _
j / e"M"("“-)sin sums = 2«‘——-'“(le”"’“D.
n a hle - znl

Substituting this into (3.12), and performing the k-integral, we find that

_Pa"fi j _ tit—'21 _ _yr—=iE.— 4,, I. ssn Iva z.|+ M +ssn Iv. 2. M

2_ 2 1_ 2xma y.)Hga thaw“
Iv. — 2.!

Since the Mach number M is larger than one, the arguments of both the two sign functions in the integrand

are always positive. Hence the quantity enclosed in the square brackets is identically equal to 2. This result

is then seen to be exactly the same as (3.9), and hence (3.11), the result derived through energy conservation

arguments. The agreement of the two calculations also give evidence that the supersonic leading edge is

indeed dragless, because the far field calculation does not involve any assumption at die leading edge, but

gives the same result as that of the energy conservation arguments which presume a draglss leading edge.

 

4. ENERGY SCATTERED BY A FINITE CHORD AEROFOIL

In practice, aerofoils have finite chord and it is obviously of interst to see whether the finitenss of the

aerofoils can significantly afieet the generated sound. We consider an aerofoil of finite chord 2b that moves

supersonically in the plane :3 = 0. Since the disturbances caused by the trailing edge of the supersonic aerol'oil

cannot afi’ect the field ahead of it, the pressure fluctuations on the finite aerafoil surface are precisely the same

as those on a semi-infinite aerofoil which is given by (2.3) with :3 = 0. Because the pressure fluctuations

vanish elsewhere in the plane :3 = 0 due to symmetry, (2.3) can be utilised to find the pressure perturbations

in the field according to Kirchhoff's theorem, and hence, the acoustic energy radiated to infinity The total

energy can also be calculated through the evaluation of the energ across the plane control surface just above

the coordinate plane 2, = 0. In this event, the velocity distribution on the aerol'oil has the same specification

as that in the semi-infinite case, both being determined according to the vanishing normal velocity boundary

condition. Behind the trailing edge, the velocity distribution is unknown, but this does not afl'ect the energy

calculation, because the pressure fluctuations there always vanish due to symmetry, and so too doa the energy

flux. Hence the energy flux in the plane a; = O {or this finite chord situation is given by

uo[H(th~— :1) — H(th — 1, —- 25)]

times the pressure (23)» Integrating the result over time t and space 2., we derive an expression

5, = M] Wynn_ (y, _ 2,) _ my, —z.|]d’yad2:,, (4.1)
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where we have multiplied the result by two to take account of the energy into the lower halfspace, so that E. is
|l|e total energy produced bythe aerofoil. The integrals in (4.1) can be evaluated by changing the integration
variables x. and y. into polar coordinates, which transfer (4.1) to

z
E. = ago-£1 / H[n7 — k7 — A, — 2H 505(0 — 15)]Hl2b - E(coso + M)]AdAdL-dndfi. (4.2)

where both the a-integral and the fl-integrnl are performed from 0 to 21f, the Xintegration is from 0 to a and
that with respect to k along the positive h-axia. In (4.2). we can replace cosh - B) in the first Heaviside
function by cosfi. becausethe B-integral is over a complete period. Thus. the a-integral and the A—integral can

be evaluated separately, by utilizing respectively the two Heaviside functions. The result can then be further

calculated as

13—61:.3113413 when

m 3 3 1 b l -hE. = ?Pfl"n¢' +mf( ) “ en (4.3)

 

L9 as L (—5an,an 1+2“ “(M_l) when

where [(2) is a complicated combination of elementary functions and elliptic functions. but it can also be
expressed by a simple integral as

_ LEMx/l-v‘!(z)—/ ,, 2M¢/a_b:/aa_(M,_l)n,dm

with the lower limit of integration given by b/a(M + 1).
These results are shown in figure 4. where the energy produced by the finite chord aerofiail is plotted

as a functioh of the aerofoil Mach number M. Apparently, the upper bound of the radiated energy is that
of a semi-infinite aerofoil. This maximum energy is achieved. not ha I limiting procea as the aerofoil chord
tends to infinity.-but at a condition A > a(M + l). as indicated by (4.3). For aerofoila with chord larger than
20(M+ 1)_, the radiated energy is independent on the aerofail Mach number just ana semi-infinite aerofoil.
As analysed in section 4. the supersonic trailing edge in this use of large chord nerofoil behaves in the same
way as that of the semi-infinite plane, and has no influence on the flow field.

exact calculation (4.3)
"'“asymptotic result (4.6)

Et
/fl

nu
aa

'

at!“ = 10.0

 

l 20 40 60 80 100

aerofoil Mach number M

Figure 4. The scattered energy by a finite chord aerofoil.

For a fixed acml’oil chord, the radiated energy decreases as the Mach number A! increases, indicating that
the faster llu: supnrsonic aerofoil moves. the quieter the sound field will be. The decreue of E. can be shown

to be U.” at high vain-'5 of .1]. It is straightforward to demonstrate this by evaluating (4.1) in the limiting

case of M > i. The Io-iltlegrul can be performed, in this event. as

.,

f“ [5,(n)H(So — 51) + SAM/{(51 —- Sn)]tln, (-H)
o .
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where 51(o) = ‘lfi— y}, sin7(a -fl) —- |y.lcos(o — [3). 59(0) = Qb/(M+ win) and [7 = annular/yr)

Apparently. H(Sn — SI) vanishes and H(S; — Sn) —~1 in the case olM >1. Hence, [4.4) reduces to

1' 2b 41b
——d = . .

a M+cosaa M-t (45)

Equations (4.5) and (4.1) then yield that, for M > II

2 2
E, c mm. (4,6,

M

This result clearly reveals a 1 /M dependence of the radiated energy; it decreases as the supersonic aerofoil

speed increases, mainly becauseof the reducing duration of the pressure pulse at high supersonic speed. The

asymptotic solution (4.6) is compared. in figure 4, with the exact calculations of (4.3). The result (4.8) also

predicts a linear relation between the energy and the chord of the aerofoil. The linear increase oi’sound with

the dimension of the aerofoil is true only for the case of high supersonic speed and moderate chord; for fixed

M and very large 5, (4.4) reduces to (3.10) instead 0114.5). because H(S¢ —5.) would then be equal to unity

and H(S; — Sn) vanishes. and the energy is given in this case by the first line of (4.3).

5. CONCLUSIONS

We have examined a flow-aerot'oil interaction problem. The sound generated by a semi—infinite plane

with aleading edge moving supersonically through and interrupting a uniform cylindrical flow has been found

exactly. The generated sound takes the form of a pressure pulse of finite duration. in directions other than

the Mach wave direction. the pressure pulse is switched on and of? at zero amplitude. and has a maximum

in the middle, which decreases. due to spherical spreading, inverser in proportion tn the distance that the

pulse travels. Along the Mach angle. it has been found that the pulse has sharp faces (both front and rear)

and constant amplitude; it reaches distant observers without attenuation according to liner theory. It is the

noisieat sound from the flow-aerofoil interaction and is, we believe, likely to be one of the most important

aspects concerning the noise of aircrait using supersonic propellers.

The energy radiated to infinity has been calculated explicitly. For a semi-infinite aeroloil. the sound is

scattered from the uniform jet flow; the loss of kinetic energy of the jet flow during the whole interruption

process has been shown to be precisely equal to the energy radiated as sound to infinity. The scattered acoustic

energy has been shown to be independent of the Mach number at which the supersonic semi-infinite plane

moves. By calculating the sound energy radiated to infinity and considering the conservation of energy, it has

been demonstrated that the supersonically moving aeroi'oil dou not experience any force whose work might

affect the sound generation proces. For aerofoils of finite chord. it has been shown that the radiated energy

is a function of the aerofoil Mach number for small chord, but approacha the value for semi-infinite aerot'oila

when the chord is larger than the diameter of the cylindrical flow times M + 1. At high supersonic speeds,

finite chord aerofoils radiate energy that decreases inversely as the Mach number of the finite chord aerofoil

increases; the higher the speed, the quieter will be the sound generated as a result of flow scattering by afinite

chord supersonic aerol'oil.
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