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1. Introduction

In a recent paper [1], we presented a theoretical study of sound generation by the initial
impact caused when an idealised spherical water drop vertically falls upon an otherwise
quiescent water surface. That study makes use of the simple symmetrical geometry in the
initial impact process so that Kirchhoff theorem can be applied and the generated waves
and the energy carried by them can be evaluated in closed forms. This enabled us to show
that the rapid momentum exchange between the fluid in the falling drop and that in the
main water body causes the radiation of compressive waves. These waves are radiated in
the form of a wave packet with a densely packed edge which is heard in the far field as a
noisy shock-like pulse followed by a quickly decreasing tail. The wave packet carries with
it sound energy proportional to the kinetic energy of the falling drop and to the cube of
the impact Mach number. Possible applications of these analytic results to the study of
noise from natural rains were also discussed there, and an illustrative example was given
in which the noise level due to rain showers is linearly related to the rainfall rate, which
was shown to be consistent with observations.

From recent studies on rain noise [2-5], it is clear that a falling droplet causes acoustic ra-
diation essentially through two mechanisms, namely, the initial impact and the subsequent
entrainment and pulsations of air bubbles. For the impact sound, it has been observed
that many factors may affect to the radiated sound. These includes, for example, the
statistic distribution of the drop size, the shape of the drops, the impact velocities and the
angle at which a’drop enters the water body [5-7]. Though our previous study [1] gives an
illustration where impact noise is studied analytically, it remains to be seen whether that
study can be extended to cases containing the above-mentioned factor, which is essential to
being able to make detailed comparison between our theoretical results and observations.
The work reported here is a small step towards this direction, involving shape changes
from a spherical drop. While we will present the theory for arbitrary drop shapes, partic-
ular emphasis will be put on ellipsoid shaped drops which have been observed to closely
approximate drops in natural rains [8].

The formulation for the pressure fluctuations generated by the impact of an arbitrarily
shaped drop is given in section 2, which is done by using the Kirchhoff theorem to express
the pressure in terms of the normal velocity distribution on the surface of the main water
body. With this formulation, it is shown that the solutions for an elliptical drop can be
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infered from those of a spherical drop by simple algebraic manipulations. The ellipsoid -
shaped drop is simply equivalent to a spherical one at a higher impact velocity and with
~ a radius equal to the length of the half major axis of the ellipsoid (the axis parallel to the
surface of the water body). The equivalent impact velocity is higher than the actual one
by the ratio of the lengths of the two axes. From this relation, the energy radiated by an
elliptical drop can be derived. It is shown that an ellipsoid is more efficient in radiating
'sound than a spherical drop. Suppose that an elliptical drop has the same impact velocity
and has the same volume as a spherical drop so that the kinetic energies carried by the two
are equal. Because of the shape difference, however, more energy carried by the elliptical
drop is radiated to the far field as sound than that of the spherical drop. The difference
in the acoustic radiation between the two cases is a factor equal to the sixth power of the
ratio between the two axes of the ellipsoid.

2. F_ormulation

Consider a drop of axisymmetrical shape vertically falling onto an initially quiescent water
surface. We choose the initially undisturbed water surface as the coordinate plane zg =0,
where the Cartesian coordinate system (z,%3,23) is fixed such that the drop is falling in
the negative z3 direction with constant velocity U and it touches the water surface at the
origin of the coordinate system at £ = 0. The geometry is illustrated in figure 1. According
to the Kirchhoff theorem, the pressure fluctuations at the observation position x and time
t can be expressed in terms of a retarded integral of the normal velocity distribution over
a control surface [9]. Choosing the plane z3 = 0 as the contral surface and denoting by
t3(za,t) the velocity distribution in the negative 3 direction on this surface, the Kirchhoff
theorem then gives the pressure fluctuations p(x,t) as

P08 [ us(ya,7)

= 2
T 2matt,, |x-yl 4 Yar (21)

p(x,1)

where po is the constant mean density in water and the integrals are performed on the
plane ys = O at the retarded time 7 = ¢ — [x — y|/¢, ¢ being the constant sound speed in
water and |x — y| the modulus of x — y. Since the only time dependence in the integrand
is contained in r, the derivative with respect to ¢ can be transfered inside the integrals and
converted to one with respect to 7. We can then rewrite (2.1) as

— ﬂ)_ 1 aua(ya!r) 2 .
plx,t) = 2 fy.. x-y| @or Yo . (2-2)

To evaluate this, it is necessary to specify the velocity distribution ug(ra,2). It can be
noted that, during the initial impact, this velocity distribution is nonzero only within
the contact circle between the drop and the water surfaces because the contact circle
expands supersonically. During this expansion, no waves can travel ahead of the contact
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Figure 1. A water droplet falling onto an originally quiescent water surface.

circle so that the waves form a wave packet within the region inside it, as schemetically
shown in figure 2. These waves are not aware of any boundary effects so that they are
completely anti-sysmetrical about the plane zg = 0; the velocity within the wave packet
varies continuously from zero at the edge of the packet in the water body to the constant
value U at the edge in the drop. Thus, the velocity distribution on the median plane
must be half the velocity difference U. This is true as long as the expansion velocity of
the contact circle is larger than the speed of sound in water; when the expansion velocity
becomes subsonic, some waves may overtake the expanding contact circle, be reflected by
the pressure release surface ahead of the contact circle, and hence, destroy the complete
anti-sysmetry. However, the process taking place at this later stage can be expected to be
much less significant in radiating sound waves. On this account, the velocity distribution
u3(zq4,t) can be written as

us(zart) = 3 HOH(B(E) ~ [zal), e

where b(t) is the radius of the drop/surface contact circle and H is the Heaviside step
function, equal to unity for positive arguments and zero otherwise. The time dependent
contact curve between the drop and the water body has been denoted by the simple circle
because of the assumption that the drop is axisymmetrical; if the drop is of other shape
or if it is falling obliquely onto the water surface, this axisymmetry would be no longer
assumed so that a more general expression would have to be used to replace the argument
b(t) — |za| in the second Heaviside function in {2.3).

On substituting (2.3) into the Kirchhoff formulation (2.2), it immediately follows that

) = B0 [ i e H S0 ~ e (2.4
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Figure 2. The wave packet produced by the supersonically expanding
contact circle during the initial impact.

where § is the Dirac delta function resulting from the derivative of the Heaviside function.
The y, integrals can be conveniently evaluated by changing the integration variable to
polar coordinates according to

y1=Acosa and y3 =Asina, (2.5)

and performing the a integral by making use of the properties of the § function. When
this is done, the pressure fluctuations can be found to be

-1

3b(r) H(r)Ad). (2.6)

da

poU [® 1 8b(r)
4r Jo |[x—y| or

p(x,t) =

This result can be further simplified by noticing the chain rule of differentiation

_b(r) Az
T 3 ex -y

l 36(r) |sin(a — )], 2.7)

da

_ Bb(r)ﬁ
| 8r de

where o' = arctan(zz/z,) and the last step follows from using the retarded time r =
t — |[x —y|/e to calculate 37/Ba. When this result is substituted into (2.6), we derive

poUe = __H(r) .A, | (2.8)

plx.t) = dn|zal Jo |sin(e - a’)ld

where  is now a function of the integration variable A, determined by the implicit equation
b(r) — A = 0 with b given by the shape of the drop.
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Figure 3. An ellipsoid water drop whose vertical falling makes a, > as3.

3. The transform from spherical to elliptical shape

The radius of the contact circle 4(¢) can be found from the geometry of the problem once
the shape of the drop is given. For example, in our previous study [1] where the drop was
assumed to be a sphere of radius a, b(t) is then given by

b(t) = [a® — (a — U)2)"*, (3.1)
from which, the expanding velocity of the circle can be derived by differentiation as

. a—-Uliyu
b(t) = [a? _( (a - (tj)t)z]n/z'

(3.2)

where the overhead dot denotes a time derivative. This is larger than the constant sound
speed ¢ for small time. The instant ¢, at which b becomes smaller than ¢ is given by

a 1 1 _.a
tc—ﬁ(l——ﬁ)ﬁ'EMEf(ﬂ M<1, (3.3)

where M = U/c is the small impact Mach number.

In natural rains, the shape of a falling drop depends on many factors. It has been observed
that ellipsoid is a very close approximation [8]. Because of its falling motion, a drop has
higher surface pressure in the forward and backward regions on its surface, and lower
pressure on the sideward regions. As a result, the drop is flattened so that its axis parallel
to the direction of motion becomes sharter than those in the other two directions. This
gives an elliptical shape illustrated in figure 3. Denoting the half lengths of the two axes
respectively by a, and a; with a; > a3, the geometry of the problem leads to

b{t) = 2 fa} - (ea - 00" (34)
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Figure 4. Contours of p(x,t)/p,Uc within the wave packet.

Iis time derivative then gives the expansion velocity

a (dg -~ Ut)U

and the critical time for b{t) equal to ¢ can be found to be
¢ —ﬂ(l— 1 ) 1M'-"ﬂ(ﬂ)2 for M<1 (3.6)
TUN T VIrMaag) "7 U\ ' '

Comparing the set of results for a spherical drop with those for an ellipsoid, it is clear that
(3.4), (3.5) and (3.6) can be expressed by the results (3.1), (3.2) and (3.3) provided that a
and U in the latter case are replaced respectively by a; and U’ = Ua, /a;. Note also that
the sound pressure (2.8) is completely determined once b(t) is given. Thus, the sound from
an elliptical drop can be easily infered from the solution for a spherical drop. The above
results actually give an analogy between the two cases; an ellipsoid drop is equivalent to
a spherical one with an analogeous radius ¢, and a higher impact velocity U’ (because
a; > ag).

4. The pressure waves

For a spherical drop, we have calculated the pressure (2.8) with the result [1)

p(x,t) =

pole ["(‘) H [4X%23 — ([x|? + A3 — h2)?] (41)
0

m [43223 — —(|x|? + A2 — h2)2)/2 7
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where A is introduced to save writing; A = (Ut —a + v/a? = X%)/M. This can be rewritten
in a more explicit form, namely,

1 1- M
Ij:z}? -2/ —— marrev LU )
° {4202 - M?n) - [ + 02 - M?n) - (F-n)?]"}
where the overhead tildes means nondimensional quantities with the definitions
- Ut . X
t= aM? and X = m, (4.3)

and the integration limits are also determined by requiring the argument in the square
root to be positive, which comes from the Heaviside function in (4.1). The argument in
the square root is a quartic polynomial in the integration variable n. Thus, according
to the formulae (3.148) of [10], the integral is in principle expressible in terms of elliptic
functions. It is also straightforward to evaluate it numerically; some results are shown in
figure 4 where contours of p(x,t)/poUc are plotted in the (|z,|, z3) plane, corresponding
to the case of £ = 0.5 and M = 10~3. Since the waves are anti-sysmetrical about the
plane zz = 0, only half of the wave packet is plotted. The details of this result has been
analysed in our previous study [1). Here we only point out that though this is calculated
for a spherical drop, the features analysed in [1] all pertain to the case of an elliptical drop.
For example, the mechanism by which compressive waves are radiated is the same for the
two cases and the form of the generated wave packet is also the same. This is guaranteed
by the analogy between the two cases shown in the previous section.

6. The radiated acoustic energy

As analysed in [1], the waves shown in figure 4 must undergo reflections from the boundary
surfaces before they escape to the far field, so that the far field radiation pattern can only
be examined by including these reflection effects, which does not appear to be an easy task.
However, the acoustic energy radiated to the far field can be calculated directly from the
results derived in the previous sections without having to examine the far field structure.
This is because the energy radiated to infinity is precisely equal to the energy carried by the
waves shown in figure 4 and represented by the result (2.8); the reflections only affect the
form of pressure pulse. There is no mechanism in our model for this compressional energy,
once it has been converted from the kinetic energy of the falling drop, to be converted back
to kinetic energy again, so that it must all be radiated to the far field. Thus, the radiated
acoustic energy can be calculated from the formula

E=z . [ lzas0,tus(za, ata?sa, (5.1)
] Za

where ug(z,,t) is the velocity distribution on the plane z3 = 0 specified by (2.3) and
p(Za,0,t) can be conveniently taken as (2.8) or (4.1) with z3 set, to zero. The factor 2
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in (5.1) takes account of the energy carried by those waves which originally propagate
upwards into the droplet, but are later reflected back into the water body by the drop
surface and eventually radiated to the far field. '

Following [1] by substituting (2.3) and (4.1) into (5.1), we derive

ta fb(t) fb(t) H [4A“r2 _ (,.2 + A2 h2)2]
0 0

E=2 U’c[
po [4A3r2 — (2 + A2 - h2)2]1/2

0

AdArdrdt, (5.2)

which follows from changing the z, integrals to polar coordinates according to z; = rcos g
and z; = rsin# with the g integral equal trivially to 27 since the integrand has no g
dependence. By making use of the formula (2.261) of [10], the r integral can be carried -
out with the result :

Cpb(n) 40%r2 . (r2 4+ )2 _ 42)2 2_y2_ p2|P
f H| (r* + h 3 lrd’,= L aresin 2 —h° , (5.3)
0 [4A2r2 — (r2 4 A2 — h2)3] / 2 2AlR| A

where the integration bounds A and B have been shown in [1] to be
A=|A—|k|]| and B=2XA+|A| (5.4)
On substituting these into (5.3), the right hand side of it reduces to #/2 and (5.2) becomes

. [ O T g 1
E = pU c1rf f AdAdt = EPOU ct; (a— EUtc) . (5.5)
0 0

Using (3.3) for t., this can be rewritten in terms of the impact Mach number M as

=2t ) [1- —=——] ~=M® for M<1, 5.6
Eq 4M ViI+ M2 Vv1+ M2 16 ° (5.6)

where Ej is the kinetic energy carried by the falling drop, that is, Ep = (4/6)poU2ra3.

The result (5.6) is calculated for a spherical drop. As for the pressure fluctuations, if
an elliptical drop is considered, the radiated acoustic energy for such an ellipsoid can be
infered from (5.6) be simply replacing & by a; and U by Ua;/az. Thia leads to the result

5
= Toys s(a_x)
E, = 8c3U al 0/ (5.7

where we have used the subscript e to indicate the case of an elliptical drop. It is of interest
now to examine the radiation efficiency of elliptical drops in comparison to spherical drops.
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To this end, we assume that the elliptical drop has the same impact velocity and the same
volume as a spherical drop of radius a so that the kinetic energies carried by the two drops
are the same. This requires the equal volume relation a® = a%e;. From the results (5.6)
and (5.7), it immediately follows that |

ff._(“l)s“_?_(ﬂ)a (5.8
E ~ \az/ a® \ag/ ' -8)

where the last step follows from the use of a® = e?a;3. Since a; > a3, it is then clear that
more energy is radiated as sound in the case of an elliptical drop than a spherical drop.

The work reported here was started when the author was holding a Research Fellowship at
St John’s college, Cambridge, UK. The author would like to thank Professor J. E. Ffowcs
Williams for many helpful discussions.
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