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Vibration of the double-deck sandwich plate with pyramidal lattice core is investigated in the
present paper. The structure consists of three thin panels and two lattice cores. The lattice truss
core is modeled by a continuous material. The equation of motion of the double-deck lattice
sandwich plate is established by Hamilton’s principle in which the displacements are expressed
with a simple method, and the natural frequencies of the structure are calculated. The effects of
structural parameters on the vibration characteristics of the double-deck lattice sandwich plate
are analyzed and discussed. The present method will be useful for the vibration analysis and
design of the sandwich plates with lattice truss core.
Keywords: Sandwich plate; lattice truss core; free vibration; Hamilton’s principle; natural
frequency

1. Introduction
Sandwich structures which comprise thin face-sheets and thick cores have been used widely in

the routine life. The face-sheets can be different in thickness and material, and they mainly support
the bending loads and in-plane loads. The cores can be honeycomb, corrugated, truss core or foam,
and they primarily support the transverse shear loads.

Some theoretical and experimental studies on the vibration analysis of the sandwich structures
have been conducted. Reddy and Kuppusamy [1] analyzed the free vibration of the orthotropic
anisotropic laminate plate, and Reddy and Phan [2] studied the stability and vibration of orthotropic
isotropic and anisotropic laminate plate later. Wicks and Hutchinson [3] investigated a tetrahedral
truss core and either solid or triangulated face-sheets. They found the weights of the optimized truss
core plates for a given bending and shear load were similar to the honeycomb-core sandwich plates.
Hwu et al. [4] got the closed-form solution for the free vibration problems of sandwich beam and
derived an orthogonality relation consisting the effects of rotary inertia and shear deformation.

Lok and Cheng [5] derived the equivalent stiffness of an orthotropic sandwich panel and
obtained good agreement of responses between analytical solutions and the FEM results. Liu et al.
[6] raised an equivalent single layered finite element computational model to predict the structural
behavior of truss core sandwich panels. Xu and Qiu [7] investigated the natural frequencies of
composite sandwich beams with lattice truss core by combining the Bernoulli-Euler beam theory
and Timoshenko beam theory. Chen et al. [8] studied the vibration and buckling of truss core
sandwich plates on an elastic foundation subjected to biaxial in-plane loads, and they found that the
lowest buckling loads and modes were dependent on the foundation stiffness as well as bending and
transverse shear stiffness of the plate.

There have been many investigations on the vibrations in different forms of sandwich structures,
however, it is still essential to explore simple and effective methods to study the vibration problems
of the complex double-deck sandwich plates with lattice cores. In the present work, a convenient
and simple approach is developed to research the free vibration of double-deck sandwich plate with
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pyramidal truss core. The lattice truss core is idealized as homogeneous material in which the
transverse and in-plane shear deformation is considered. For the thin face-sheets, the bending
deformation is considered, and the effect of the transverse shear deformation is neglected. The
displacements are expressed by a simple method and the natural frequencies are conveniently
calculated. Then the effects of the structural parameters on the natural frequencies of the double-
deck lattice sandwich plate are analyzed and discussed.

2. Formulations of theoretical model
Fig. 1 shows the double-deck sandwich plate with lattice truss core whose unit cell of the

pyramidal truss core consisting of four struts is displayed in Fig. 2. The upper and lower face-sheets
share the same thickness hf, the two truss cores share the same height hc, and the thickness of the
middle thin panel is hm. The unit cell length is d and the inclination angle of the truss is denoted by θ,
and all struts have the same length Lc and cross-sectional area Ac. The total sandwich structure share
the same mother material whose density is ρ. The equivalent density of the truss core can be
expressed as
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  , and the transverse shear modulus of the truss core is given by Ref. [8]:
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EGG  , in which Es is the Young’s modulus of the mother material, and
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is the relative density of the core.
Fig. 3 shows deformation pattern of the micro-unit with length dx and width dy. The thin face-

sheets will rotate by an angle xw  and yw around the y and x axes. It is assumed that the truss
core will rotate by an angle xw  and yw  around the y and x axes, where  is an
undetermined coefficient.

Fig. 1 The schematic diagram of the sandwich plate. Fig. 2 Pyramidal lattice core.
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Fig. 3 Deformation diagram of the micro-unit.

The displacements in the x-direction and y-direction for different layers of the sandwich plate are
given as follows:
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where the subscripts 1, 3, 5 represent the upper, middle and lower face-sheets, and 2, 4 represent the
two truss cores. The strains in the different layers of the sandwich plate can be obtained as follows:
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where ε and γ are the normal and shear strains.
The stresses in the different layers of the sandwich plate can also be obtained by the Hooke’s law

as follows:
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where σ and τ are the normal and shear stresses.
The equations of motion of the sandwich plate can be established by Hamilton’s principle
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where T and U are the kinetic and strain energies of the structure,  is the variational operator, and
t is the time.
Substituting Eq. (1), (2) and (3) into Eq. (4), and performing the variation operation in terms of w,

the equation of motion of the lattice sandwich plate can be obtained as
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where A, B are given in Appendix.
For simply supported sandwich plates, the boundary conditions can be written as

0,0  xMw , for x = 0 and a,

0,0  yMw , for y = 0 and b, (6)

where a and b are length and width of the sandwich plate. The transverse deflection function can be
expressed as
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where 0 is the initial phase angle, and Amn and ωmn are the amplitude and angular frequency of the
transverse displacement.
Substituting Eq. (7) into Eq. (5), the frequency equation for simply supported sandwich plates

can be obtained as
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According to the force balance equation, one has
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Substituting Eqs. (7) and (10) into Eq. (9), the expression for the coefficient  can be expressed
as
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Now, substituting Eq. (11) into Eq. (8), the natural frequencies of the sandwich plate mn can be
easily obtained.

3. Results and analysis
The dimensions and material parameters of the sandwich plate are given as follows:
E = 210GPa, ν = 0.3, ρ = 7800kg/m3, a = 1.06m, b = 1.06m, hc = 0.03m, d = 0.0424m, hf =

0.0025m, hm=0.0025m, and Ac = 9×10-6m. And the results are shown in Table 1.

Table 1 Comparison of the natural frequencies (Hz) of a simply supported sandwich plate.

Then the effect of the thickness of the face-sheets, the height of the truss cores, and the cross-
sectional size of the struts on the vibration characteristics of the double-deck sandwich plate are
discussed. The cross-section of the struts is assumed to be square, and its length of side is expressed
by tc. Other parameters are mentioned before.

Fig. 4.1 shows the effect of the thickness of the upper and lower face-sheets on the first four
natural frequencies of the lattice sandwich plate. It can be found that all the first four natural
frequencies decrease with the thickness of the face-sheets increasing. The effect of the thickness of
the middle face-sheet on the first four natural frequencies of the lattice sandwich plate are similar in
Fig. 4.2, which shows that as the the thickness of the face-sheet increasing, all the natural
frequencies decrease. Fig. 4.3 shows the effect of the cross-sectional size of the struts on the first
four natural frequencies of the lattice sandwich plate. It can be seen that all the natural frequencies
increase with the cross-sectional size of the struts increasing. Fig. 4.4 shows that with the height of
the sandwich cores increasing, the natural frequencies first increase and decrease later. And the
maximum values appear when the height of the sandwich cores are 0.04m. So by changing the
thickness of the face-sheets, the height of the sandwich cores and the cross-sectional size of the
struts, proper natural frequencies of the double-deck sandwich plate could be obtained to satisfy the
practical requirements.

Modes (m, n) (1,1) (1,2), (2,1) (2,2) (1,3), (3,1) (2,3), (3,2)

Frequency (Hz) 526 831 1051 1175 1340

Fig. 4.2
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4. Conclusion
An effective methodology is proposed to analyze the free vibration of the simply supported

double-deck sandwich plate with lattice truss core. And the effects of the structural properties on the
vibration characteristics have been analyzed. From the investigations, the following conclusions can
be drawn:

(1) The natural frequencies of the double-deck lattice sandwich plates can be calculated by the
present method.

(2) The structural parameters have different influences on the natural frequencies of the lattice
sandwich plates. With the thickness of the upper, lower and middle face-sheets increasing, the first
four natural frequencies decrease. And the natural frequencies increase with the cross-sectional size
of the struts increasing. As the height of the sandwich cores increase, the natural frequencies first
increase and decrease later.

APPENDIX
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