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The analysis of vibro-acoustic systems in the mid-to-high frequency range is computational costly 

and technically challenging. Sub-structuring methods are often employed in such cases, which 

allow reducing the number of degrees of freedoms at the interface between sub-systems. In the 

same category, the Condensed Transfer Function (CTF) approach has previously been proposed, 

to be improved and further explored in this paper. In the CTF approach, the uncoupled sub-sys-

tems are first modelled separately, by approximating the force and the velocity distribution over 

the coupling surface by a set of so-called condensation functions. By applying the force equilib-

rium and velocity continuity conditions, the overall system can be assembled and solved accord-

ingly. In this paper, a panel-cavity system is modelled with the CTF approach, in a wide frequency 

band which covers the critical frequency of the panel and embraces a relatively high modal den-

sity. It is demonstrated that the calculation efficiency of the CTF method can be greatly increased 

by properly selecting the condensation functions and exploring their physical characters. As a 

result, the previously established convergence rule based on the gate functions can be relaxed. 

More specifically, the condensation functions such as exponential functions exhibit strong phys-

ical features. For a given frequency band, the condensation functions that match the structural 

wavelength properties dominate the system response. Therefore, the velocity and energy distri-

bution on the coupling surface can be described by only a subset of the CTFs involving only a 

few terms. This leads to a significant reduction of the matrix size to be solved and consequently 

an increased computational efficiency. 
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1. Introduction 

The development of dedicated methods for the mid-to-high frequency vibro-acoustic modelling 

has always been a challenge and arousing vast interest in the vibro-acoustic community. Methods 

based on sub-structuring philosophy are often employed in such cases. Upon proper handling of the 

interfaces between sub-systems, these methods allow reducing the number of degrees of freedoms 

involved in the calculation. Among existing methods, the Patch Transfer Functions (PTF) method is 

a representative example[1]. The PTF method allows the subsystems to be modelled separately, be-

fore being assembled along the coupling surface based on continuity conditions. The coupling surface 

can be either the interface between a structure domain and an acoustic domain[2], or between two 

acoustic domains[1]. The method consists in dividing the coupling surface into patches using a crite-

rion based on the wavelength of the propagative waves on the coupling surface. Then, for each un-

coupled subsystem, the transfer functions between each pair of patches should be calculated. In the 
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final stage, the patch transfer functions are assembled to predict the behaviour of the global system. 

The method has been applied to airborne noise predictions[3], sound transmission in buildings[4], 

and transmission loss predictions in silencer designs[5] etc.. The method was extended and cast into 

a more general form, referred to as Condensed Transfer Function (CTF) approach[6]. The CTF ap-

proach extends the patches to any orthogonal function sets along the coupling surface such as the 

complex exponential functions and the Chebyshev polynomials, referred to as Condensation Func-

tions (CF). This method has been applied to the modelling of non-axisymmetric internal frames for 

the investigation of the radiation efficiency and energy distributions [7]. However, the research on 

CTF approach, has only focused on the cases of line coupling like frame-shell connections. This paper 

examines the use of different types of condensation functions to the problem of structure-acoustic 

coupling over a surface. The choice of different types of CFs as well as their impact on the modelling 

efficiency and accuracy will be the focus of the paper. In particular, we will focus on the use of 

complex exponentials as condensation functions. The basic principle of the CTF approach will be 

firstly presented using a benchmark problem of a plate-cavity system, including the system model 

and the convergence rule. The performance of the gate functions (patch functions) and exponential 

functions will be compared afterwards and the advantage of exponential functions will be demon-

strated. 

2. Theoretical Analyses 

In this section, the basic principle of the CTF method is applied to model a plate-cavity system. 

Additionally, examples of condensation functions as well as the rule to warrant their convergence are 

given. 

2.1 Basic theory of the CTF method 

Consider a rectangular acoustic cavity with one of its walls covered by a vibrating plate and the 

others being acoustically rigid, as shown in Fig.1. The plate, simply supported along all four edges, 

is subjected to a prescribed sound pressure excitation 𝑃𝑒. The two structural (panel) and acoustic 

(cavity) subsystems are coupled along their interface Ω and will be denoted by superscript s and a, 

respectively.  

  
Fig. 1: The cavity-panel configuration and coordinate system. 

A set of N orthonormal functions {𝜑𝑖}1≤𝑖≤𝑁 is employed to approximate the velocities and the 

forces on the coupling interface, which will be referred to as condensation functions (CF) in this paper. 

Notice that the coupling interface is two dimensional. For each subsystem α, the condensed mobility, 

also referred to as the CTF between 𝜑𝑖𝑗(𝑥, 𝑦)  = 𝜑𝑖(𝑥)𝜑𝑗(𝑦) and 𝜑𝑘𝑙(𝑥, 𝑦) = 𝜑𝑘(𝑥)𝜑𝑙(𝑦), is de-

fined by applying an excitation pressure 𝑃𝛼(𝑥, 𝑦) = 𝜑𝑖(𝑥)𝜑𝑗(𝑦) on Ω as: 
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in which <𝑓, 𝑔> is a scalar product defined as ∫ 𝑓(𝑥, 𝑦)𝑔∗(𝑥, 𝑦)𝑑𝑆
Ω

 with 𝑔∗  being the complex con-

jugate of 𝑔, and ijU


 is the uncoupled velocity on Ω when subsystem α is subjected to the excitation 

𝑃𝛼(𝑥, 𝑦) = 𝜑𝑖(𝑥)𝜑𝑗(𝑦). Additionally, the uncoupled condensed velocity 𝑢̃𝑖𝑗 of the subsystem α is 

defined by 

𝑢̃𝑖𝑗
𝛼 =< 𝑈̃𝛼, 𝜑𝑖𝑗 >,                              (2) 

where 𝑈̃𝛼 is the uncoupled velocity of the subsystem α at Ω when only external excitation exists. 

Then one obtains the approximations of the uncoupled velocities and forces for each subsystem as 
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where 𝑢𝑖𝑗
𝛼  and 𝑓𝑖𝑗

𝛼 are the amplitudes of uncoupled velocity and external excitation of subsystem α 

with respect to condensation function 𝜑𝑖𝑗. In the present case, 𝑝𝑎 =0 and 𝑝𝑠 = 𝑃𝑒. For the present 

linear system, the velocity and force on the coupling interface can be calculated following the super-

position principle, given by: 

{
𝑢𝑖𝑗

𝑠 = 𝑢̃𝑖𝑗
𝑠 + ∑ 𝑌𝑖𝑗,𝑘𝑙

𝑠 𝑝𝑘𝑙
𝑠

𝑖,𝑗

𝑢𝑖𝑗
𝑎 = ∑ 𝑌𝑖𝑗,𝑘𝑙

𝑎 𝑝𝑘𝑙
𝑎

𝑖,𝑗
.                                                    (4) 

On the other hand, the velocity continuity and force equilibrium principle along the coupling interface 

yield 

{
𝑈𝑠 = 𝑈𝑎 = 𝑈𝑐

𝑃𝑠 = −𝑃𝑎 = 𝑃𝑐.                                                            (5) 

in which the superscript c represents variables of the coupled system at the coupling interface. Ac-

cording to the orthogonal property of the condensation functions, Eq. (6) gives the variables relation-

ship deduced from Eq. (5): 

{
𝑢𝑖𝑗

𝑠 = 𝑢𝑖𝑗
𝑎

𝑝𝑖𝑗
𝑠 = −𝑝𝑖𝑗

𝑎 .                                                                (6) 

For the acoustic cavity, the condensed impedance matrix 𝑍𝑎, which satisfies 𝑍𝑎=[𝑌𝑠]−1,  is preferred 

rather than the condensed mobility. Substituting Eq. (6) and 𝑍𝑎 into Eq. (4), 𝑈𝑐 can be finally calcu-

lated as: 
1

c s aU I Y Z u


    .                                                          (7) 

2.2 Two examples of condensation functions and their convergence rules 

2.2.1  Gate functions 

The gate functions are defined as: 

𝜑𝑖(𝑥) = {

1

√𝐿𝑔
  if (𝑖 − 1)𝐿𝑥 ≤ 𝑥 ≤ 𝑖𝐿𝑥

0     elsewhere                  
,                                           (17) 

where 𝐿𝑔 is the length of each gate function. Figure 2 explicitly shows the working principle of gate 

functions on the coupling interface, in which i and j are the gate indices for x and y directions, respec-

tively. Each condensed mobility term 𝑌𝑘𝑙,𝑖𝑗  physically corresponds to the velocity response 𝑈𝑘𝑙 when 
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a unit excitation 𝑃𝑖𝑗 is applied, as illustrated in Fig. 2. In this case, the general CTF method retreats 

to the previous patch transfer function (PTF) method as a special case. Owing to the intuitive and 

explicit physical meaning of the gate functions, the corresponding condensed mobility and impedance 

can be obtained from various numerical calculations, or even from experimental measurements.  

 
Fig. 2: The working principle of gate functions. 

As to the convergence criterion, it is well accepted that at least two functions are needed to describe 

a wavelength. Therefore, for a given structural or acoustical wavelength λ, the length of the gate 

functions Lg should satisfy:  

𝐿𝑔 ≤
𝜆

2
.                                                                    (18) 

 

2.2.2 Exponential functions 

The exponential functions are described by 

𝜑𝑖(𝑥) =
1

√𝐿𝑥
exp (𝑗

2𝑖𝜋𝑥

𝐿𝑥
)                                                    (19) 

The functions form an orthonormal set with the defined scalar product for  𝑖 ∈[0, ±1, ±2, …, ±𝑁𝑚𝑎𝑥]. 

Different from the case of the gate functions in which the coupling interface is divided into “patches”, 

the working principle of the exponential functions spatially decompose the velocity and the force 

over the entire coupling interface. 

The truncation criterion applied to the decomposition series is based on the same principle as that 

of the gate functions, written as: 

𝑁𝑚𝑎𝑥 ≥
2𝐿𝑥

𝜆
− 1.                                                          (20) 

3. Numerical validations and analyses 

In the following numerical analyses, the dimension of the cavity is set to be 2.5m×2m×3m 

(x×y×z). The simply supported plate is 1.8mm thick, located at z=0. The Young’s modules of the 

panel is 7.2×1010Pa; the panel’s Poisson’s ratio is 0.2; the panel density is 2.53×103kg/m3; 𝜂𝑎 and 

𝜂𝑝 are set to 0.001 and 0.01 for the cavity and the plate, respectively. An oblique acoustic excitation 

with an amplitude of 1Pa is impinging on the plate, with both the dihedral angle and the intersection 

angle with x axis being 45°. The purpose of using oblique incident excitation is to excite more panel 

modes and get the complexity needed for analyses. The frequency band of interest is [0, 1000] Hz. 

Additionally, according to Eq. (18), the number of condensation functions should be determined by 

the shorter wavelength among the subsystems. Because the number used for the two subsystems 

should be equal so that they can be assembled together in Eq. (7), the function number will be selected 

following the subsystem whose wavelength at 1000Hz is shorter. In the present case, the shorter 

wavelength comes from the acoustic system with a smallest wavelength of 0.17m. This results in 174 

condensation functions. In the present case, 180 gate functions will be used (15 for x direction and 12 
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for y direction) in the calculation. For exponential functions, 𝑁𝑚𝑎𝑥 =6 is selected giving 169 terms 

in the calculation.  

3.1 Pressure Validations 

The sound pressure is calculated at a receiving point chosen at (0.5, 1.3, 2)m. The sound pressure 

level (SPL) results are given in Fig. 5, in which the CTF results using two different CFs are compared 

with the reference solution obtained from the reference results. The latter was calculated using modal 

method, which has been fully validated in a previous study. It can be seen that the pressure predictions 

by both types of CFs agree well with the reference result in the low frequency range. However, the 

performance of the gate functions slightly deteriorates as compared with the exponential functions in 

relatively high frequency range, especially at the troughs of the curves where system becomes less 

dynamic. Upon averaging the acoustic pressure within the entire cavity, the averaged overall SPL is 

shown in Fig. 6, leading to the same observation as that obtained in Fig. 5. Generally speaking, the 

truncation criteria allow acceptable calculation accuracy for both type of CFs, knowing however ex-

ponential functions perform better at non-resonance frequencies in both single point and overall pre-

dictions. 

 
(a)                                                                          (b) 

Fig. 5: SPL with reference to 2x10-5Pa: (a) at (0.5, 1.3, 2)m; (b) overall within the cavity. 

3.2 Analyses of the condensed variables 

Figures 5 and 6 imply that the accuracy of the model can be improved by properly choosing the 

condensation functions. Particularly, the exponential functions behave better than the gate functions 

in mid-to-high frequency range, which will be the main focus of discussions. In this section, we will 

analyze the three main variables, namely the condensed mobility, the condensed impedance, and the 

condensed velocity of the system, so as to reveal the underlying mechanisms of such phenomena. To 

this end, we define the mid frequency range as the frequency staring from which the modal overlap 

factor of either the panel or that of the cavity starts to be larger than one. In the present case, the 

frequency range begins from 593Hz. Therefore, the variable analyses will focus on the frequencies 

higher than this value. 

3.2.1 Condensed impedance and mobility 

Firstly for the cavity, the condensed impedance 
,

a

kl ijZ  of the exponential functions at 794 Hz, which 

is the central frequency of a one third octave frequency band, is shown in Fig. 7a. For gate functions, 

the x-axis and y-axis denote the serial number of condensation functions 𝜑𝑖𝑗 following the order: [𝜑11, 

𝜑12, …𝜑1𝑗, 𝜑21, 𝜑22,…𝜑𝑖𝑗]. As to the exponential functions, the x-axis and y-axis are arranged fol-

lowing their function wavelength, defined as:  
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𝜆𝑐 =
2𝜋

√(
2𝑖𝜋𝑥

𝐿𝑥
)

2
+(

2𝑗𝜋𝑦

𝐿𝑦
)

2
.                                                           (21) 

It can be observed in Fig. 7a that the condensed impedance terms of the exponential functions are 

much larger on the diagonal area than that on the off-diagonal area. This phenomenon indicates that 

the condensed impedance terms of exponential functions are strongly coupled only with themselves 

and their conjugate functions. Other combinations (in the non-diagonal area) generate small values 

so that they can be removed in the calculations, which leave rooms for reducing the computation cost 

and getting approximations with CTF method. For the 
,

a

kl ijZ  of the gate functions in Fig. 7b, it can be 

seen that the condensed impedance are not as concentrated as that of the exponential functions. As a 

result, the impedance matrix will not be diagonally dominated. All combinations of ij and kl are of 

importance during the calculation, showing the difficulty in reducing the matrix size using gate func-

tions. 

 
                                      (a)                                                                                    (b) 

Fig. 7 Condensed impedance of different condensation functions at 794 Hz: (a) exponential functions. (b) gate 

functions.  

Similarly, the condensed mobility 
,

s

kl ijY  for the vibrating plate is analyzed. The condensed mobility 

is calculated using the exponential functions and the gate functions, respectively. The frequencies of 

interest and the coordinate arrangements are the same as in Fig. 7. Again, one observes in Fig. 8a that 

the condensed mobility of exponential functions shows the dominance of the diagonal terms, as op-

posed to the case of the gate functions shown in Fig. 8b, in agreement with the observations made in 

Fig. 7b.  

 
                                       (a)                                                                                 (b) 

Fig. 8 Condensed mobility of different condensation functions at 794 Hz: (a) exponential functions. (b) gate 

functions.  
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3.2.2 Condensed velocity 

It is shown in the last subsection that the two uncoupled subsystems can be modelled more effi-

ciently when the exponential functions are used instead of the gate functions. Whether the efficiency 

still maintains in the coupled system will be investigated in this subsection. Note that the coupling 

velocity is approximated in the CTF approach by Eq. (3). 

Figure 9 shows the amplitude of 10𝑙𝑜𝑔10|𝑢𝑖𝑗|
2
, which represent the contribution of each conden-

sation function 𝜑𝑖𝑗 in the total system response, within the whole frequency band of interest. The x-

axis denotes the frequency and the y-axis is the CTF serial number ij which is arranged in the same 

way as in Figs. 7 and 8. Figure 9a presents the velocity contribution 𝑢𝑖𝑗 when exponential functions 

are used. It can be seen that for each frequency, there are some terms holding a higher weight than 

the others and these high weighted terms change as the frequency increases, consistent with the anal-

yses on the condensed impedance and condensed mobility. As to the gate function results shown in 

Fig. 9b, the contributions from different function terms are spread out, basically at any frequency 

within the frequency band of interest.  

 
                                       (a)                                                                               (b) 

Fig. 9 Condensed velocity of different condensation functions with respect to frequencies: (a) exponential 

functions. (b) gate functions. 

 

The above analyses show the coupling and energy distribution feature of the exponential functions 

as compared with their gate functions counterparts. Results show a better prediction accuracy of the 

former and a confined coupling and energy distribution pattern across different CF terms.  

4. Conclusions 

Aiming at the modelling of the coupled vibro-acoustic system at mid-to-high frequency range, the 

condensed transfer function method has been re-examined. The method uses an orthonormal set func-

tions to describe the force and velocity on the coupling surface of each subsystem, before being cou-

pled together through the force equilibrium and velocity continuity. The condensation functions can 

be any functions satisfying the orthogonal condition. When the gate functions are used, the CTF 

method retreats to the previously proposed PTF method. In this paper, the CTF method is applied to 

modelling a panel-cavity system as a benchmark example. The validity of the CTF method is verified 

through comparisons with the reference solution, for both gate functions and exponential functions. 

It is found that the exponential function can model the coupled system more efficiently with a better 

accuracy than the gate functions. Meanwhile, a confined coupling and energy distribution pattern 

across different exponential CF terms are observed. It can then be surmised that this could be due to 

the wavy character of the functions and their spatial matching with the acoustic or structural waves 

involved. This points at the possibility of using less exponential functions terms to achieve the desired 

calculation accuracy in a prescribed frequency band. This point will be scrutinized in our future work.   
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