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Wave propagation in conical pipeline is of great interest in connection with ultrasonic flow 
measurement and horn acoustics. Theoretical researches for sound propagation in the conical 
duct concentrate on the isentropic wave propagation for the cases of stationary fluid and moving 
fluid. Moreover, excellent work on electromagnetic field theory of conical horns has been done 
by literature research. However, research on the wave propagation in cones considering the ef-
fect of thermoviscous dissipation is not complete as of today to the present authors’ knowledge. 
This paper concentrates on the influence of thermoviscous dissipation on the axisymmetric 
wave propagation in a conical duct. Based on the conservations of mass, momentum and energy, 
mathematical deduction of linear viscothermal flow acoustics is presented. Moreover, solution 
based on complex function theory is given to solve the wavenumber. Numerical calculation 
concentrates on the analysis of phase velocity and attenuation of acoustic modes.  

 Keywords: thermoviscous dissipation, conical-confined pipeline, viscothermal wave propaga-
tion. 

 

1. Introduction 
Wave propagation in a pipeline flow is of great interest in both theoretical researches and indus-

trial applications[1-5]. In the aircraft engineering, for example, particular considerations are placed 
on the prediction and suppression of engine noises[6-9]. The prediction of aero-acoustic features is 
also important in the catalytic converter design of a transport system[10, 11]. In the ultrasonic pipe-
line flow measurement[12-14], accurate prediction of ultrasonic wave propagation is of great im-
portance on the improvement of measurement performance. 

While researches on viscothermal wave propagation in cylindrical or rectangular pipelines have 
been comprehensively reported in the literature [15-19], research on wave propagation in the coni-
cal pipeline is not enough. In the case of plane wave propagation, Davies and Doak [20, 21] gave 
primary discussion under the effect of a mean flow in a conical pipeline. Easwaran and Munjal [22] 
deduced the transfer matrices of one-dimensional wave propagation at flow Mach number for coni-
cal and exponential pipeline shapes. In the book of Munjal [23], the author gave detailed deduction 
of plane wave in a conical duct. Comprehensive review of one-dimensional wave propagation can 
found in Mimani [24] and Willatzen [25] 

Multi-dimensional wave propagation in conical pipelines has also received considerable interest. 
Astley and Eversman addressed multi-modal wave propagation in non-uniform ducts with mean 
flow using the weighted residual method[26] and FEA[27]. Willatzen [25] mathematically deduced 
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axisymmetric 3-D wave propagation in a rigid-wall condical duct carrying a mean flow by means of 
an analytical Green’s function based on the modal expansion of the acoustic field expressed in 
terms of Legendre functions of non-integer degree and the spherical Hankel functions. Mimani [24] 
extended to consider the azimuthal modes. 

The aforementioned papers either analyse acoustic wave propagation in a variable area duct 
based on the simple 1-D plane/spherical wave model or whilst considering multi-dimensional wave 
propagation. However, the problem of analysing the acoustic attenuation behaviour due to the ther-
moviscous dissipation is not investigated yet. The objective of this paper is therefore, to analyse the 
effect of thermoviscous dissipation on the axisymmetric 3-D wave propagation in a conical pipeline.  

This paper is organised as follows. Section 2 presents the theoretical formulation for axisymmet-
ric 3-D viscothermal wave propagation confined by a conical duct using a semi-analytical approach 
based on the complete modal expansion. Section 3 presents the corresponding isentropic model in 
the case of an inviscid fluid. Section 4 gives some numerical discussions about the local wave num-
ber while section 5 gives the conclusion. 

2. Mathematical formulation 

Consider a truncated conical waveguide of radii  and  ( ) and opening angle   as 
shown in Figure 1. Assume that the fluid is stationary and a linear disturbance is present and propa-
gates along the conical pipeline. Spherical coordinates are chosen to represent the cone in the sense 
that the product of intervals 

   (1) 
spans the whole truncated cone. As present paper concentrates on axisymmetric wave with respect 
to the  coordinates, acoustic waves are assumed to be dependent on the  and  coordinates. 

 
Fig. 1. Schematic diagram of a conical-confined pipeline 

Under the stationary flow, the conservation of mass, momentum, and energy can be expressed as 

   (2) 

As  the monofrequency operation is preferred,  can be replaced by , thus one have 

   (3) 

According to the acoustic equations, one obtains that , then one ob-
tains 

   (4) 
According to the state equation of the perfect gas with , one obtains 
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 0 0 0
0 0 .

i
R Tp R T ρρ
ω

′ ′ ′= − ∇ ⋅ v   (5) 

Substituting Eq. (5) into the second equation of Eq. (3) and Eq. (4) yields 

 ( ) ( )2 20 0 th
0

0 0 0 0 0 0 0

i
i , .

i 3
pcR TR T T T

R T R T
ωκη ηω

ω ρ ρ ρ γ
′ ′ ′ ′ ′ ′ ′ ′= − ∇ + ∇ ∇⋅ + ∇ + ∇ ∇⋅ ∇ ⋅ = ∇ −v v v v v   (6) 

Divergence of the first equation and substituting the second equation yield 

 
22 3

4 2th th
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  (7) 

It is convenient to factorize the Eq. (7) as 
 ( )( )2 2
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 (10) 

Expanding Eq. (8) into spherical polar coordinates yields 
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12

1 sin sin 0,
sin

T Tr T
r r r

θ θ
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  (11) 

 2
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1 sin sin 0,
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T Tr T
r r r

θ θ
θ θ θ
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  (12) 

under the assumption of azimuthal symmetrical wave excitations. By separating the acoustic dis-
turbance in functions depending on [ ],r a b∈  and [ ]0 0,θ θ θ∈ −  only: 

 ( ) ( ) ,T f r g θ′ =   (13) 
Eqs. (11)-(12) can be expanded into 
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As a result, the variables are separated. We equate each side to a constant 1 2,χ χ (which is inde-
pendent of r  and θ ) and finally obtain 
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Considering the possible χ  values, Eq. (16) is customarily expressed in terms of the variable 
cosx θ= , 

 ( ) ( ) ( ) ( ) ( )1 1

1

2
2

1 12

d d
1 2 1 0,

d d
g x g x

x x g x
x x
ν ν

νν ν− − + + =   (19) 

 ( ) ( ) ( ) ( ) ( )2 2

2

2
2

1 12

d d
1 2 1 0,

d d
g x g x

x x g x
x x
ν ν

νν ν− − + + =   (20) 

where the parameters 1χ and 2χ  has been replaced by ( )1 1 1ν ν +  and ( )2 2 1ν ν + .The solution to the 
above equation is so-called Legendre functions which can be written through hypergeometric func-
tion 

 ( ) ( )
1 22 1 1 1 2 1 2 2

1 1, 1;1; , , 1;1; .
2 2

x xg x F g x Fν νν ν ν ν− −   = − + = − +   
   

  (21) 

Furthermore, Eqs (17) can be expanded into 

 ( ) ( ) ( ) ( )
2

2 2
1 1 12

d d
2 1 0,

d d
f r f r

r r r f r
r r
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Similarly, Eq. (18) is expanded into 
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2

2 2
2 2 22

d d
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Thus, the general solutions to the above two equations are 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1 2 1 2
1 1 1 1 1 2 2 2 2 2h h , h h ,f r A r B r f r A r B rν ν ν ν= Ψ + Ψ = Ψ + Ψ   (24)(25) 

where ( )
1

1hν , ( )
1

2hν , ( )
2

1hν , and ( )
2

2hν  are the spherical Hankel functions. In conclusion, the complete solu-
tion for the acoustic temperature in Eq. (8) becomes 

 ( ) ( ) ( ) ( )1 1

1 2
1 1 1 1 1 2 1 1 1

0
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2
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0
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2

T r A r B r F
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  (27) 

It should be noticed that 1A , 1B , 1B  and 2B  are constant coefficients to be determined by the 
boundary conditions at the cross-sections r a=  and b of the truncated cone. Clearly, two different 
types of disturbance can propagate in the waveguide. Inserting the above two equations into Eq. (4) 
yields the expression of acoustic pressure 

 ( ) ( ) ( ) ( )1 1

1 2 th
1 1 1 1 1 0 1 2 1 1 1

1 cosh h , 1;1; ,
i 2pp A r B r c Fν ν
κ θρ ν ν
ω

−    ′ = Ψ + Ψ + Ψ − +      
  (28) 

 ( ) ( ) ( ) ( )2 2

1 2 th
2 1 1 1 1 0 2 2 1 2 2

1 cosh h , 1;1; .
i 2pp A r B r c Fν ν
κ θρ ν ν
ω

−    ′ = Ψ + Ψ + Ψ − +      
  (29) 

3. Simplified model of inviscid fluid 
In the case of inviscid fluid, the thermoviscous dissipation is neglected in the wave propagation. 

As a result, acoustic wave is isentropic, which yields 
 0 0 0i 0, i , .p p R Tωρ ρ ωρ ρ′ ′ ′ ′ ′ ′+ ∇ ⋅ = = −∇ =v v   (30) 

Further deduction shows that 

 
2

2

0

0,p p
R T
ω′ ′∇ + =   (31) 
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which is consistent with the work of Willatzen [25] without flow. Similar deduction from section 2 
can leads to the expression of 

 ( ) ( ) ( ) ( )1 2
0 0 2 1

1 cosh h , 1;1; .
2

p A r R T B r R T Fν ν
ν

θω γ ω γ ν ν −  ′ = + − +    
∑   (32) 

It should be noticed that under the intial o0θ = , the acoustic pressure is bounded. At the bounda-
ry condition 0θ θ= , the acoustic velocity vanishes, which leads to the 

 
0

0cos

d0 0,
d x

gv
x
ν

θ θ θ
θ

=
=

′ = ⇒ =   (33) 

where gν  is defined by Eq. (21). Similarly, A  and  B  are constant parameters to be determined by 
the boundary conditions at the cross-sections r a=  and r b=  of the truncated cone. A comprehen-
sive deduction can be found in the work of Willatzen [25]. It should be noticed that the boundary 
condition in Eq. (33) is applicable to the thermovsicous case as shown in Eqs. (26) and (27), which 
means that 1 2ν ν ν= = . 

4. Numerical study 
In the section, numerical study is presented to analyse features of wave propagation. It should be 

noticed that the designation of propagation constants such as wave number and phase speed lose 
much of their intuitive meaning in a conical waveguide. Instead, the feature of wave propagation 
can be expressed in local wave number. By analogy with the cylindrical case, one can define the 
local wave number 

 ( ) i .f rk r
f
ν

ν
ν

∂ ∂
=   (34) 

As the boundary conditions at r a=  and r b=  are not specified, acoustic wave can propagate 
from a  to b  and vice versa. In the following study, one can denote that wave propagation from a  
to b is downstream and the other direction is upstream. 

In the numerical study, the parameters are for perfect gas at o20 C , which are 0 1Tβ = , 
3

0 0.35kg/mρ = , ( )th 0.0674 W K mκ = ⋅ , ( )54.15 10 kg s mη −= × ⋅ , 0ζ = , 1.4γ = , 

( )0 287 J Kg KR = ⋅ , ( )1184J/ Kg Kpc = ⋅ , ( )0
0 293K 20 CT = , 0 0 0 343m sc T Rγ= = . Assuming 

the opening angle 0θ  is o10 , o20  and o30  respectively, the lowest four values for ν  in Eq. (33) are 
listed as follows. 

Table 1. Calculated ν values for a con with opening angles: 0 10,20,30θ = . The lowest four val-
ues are given for each opening angle 0θ  

0θ /mode index 1 2 3 4 
10 0 21.5 39.7 57.8 
20 0 10.5 19.6 38.4 
30 0 6.8 18.9 25.0 

The radii of the circular cross-section at the two ends are assumed to be 0.02 and 0.2m. Further-
more, the acoustic frequency to be investigated is 10KHzf = . Figures 1-2 compare the difference 
of relative phase velocity ( R1 K )and attenuation coefficient ( 0 I8.686A k K= ) among three differ-
ent wave modes as shown in Eqs. (26), (27) and (32) for the first two modes. Figure 3 concentrates 
on the relative phase velocity and attenuation coefficient of the second mode under different open-
ing angles. From figures 1 and 2, it can be learned that the difference of the relative phase velocity 
and attenuation coefficient among the three different modes is relatively small when 0ν = . Howev-
er, the difference becomes explicit when 21.5ν = . 
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Figure 1. Comparison with inviscid and thermoviscous wave propagation in the r direction with the 
angles 0 10θ =  for the first mode. ‘thermovis-1’ represents the wave propagation in Eq. (26) and 
‘thermovis-2’ represents the wave propagation in Eq. (27). ‘inviscid’ represents wave propagation 
in Eq. (32) 

  
Figure 2. Comparison with inviscid and thermoviscous wave propagation in the r direction for the 
second mode. See Figure 1 for legend’s description. 
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Figure 3. Comparison with inviscid and thermoviscous wave propagation in the r direction for dif-
ferent opening angles for the second mode with respect with ν . 

From figure 3, it can be learned that the effect of opening angle on the features of wave propaga-
tion is significant. With the increase of opening angle, the existence of wave mode becomes easy. 

5. Conclusion 
Present paper concentrates on the thermovicous dissipation on wave propagation in a conical-

confined pipeline. Comprehensive deduction of thermoviscous acoustic wave is formulated based 
on the conservations of mass, momentum and energy when the fluid is stationary. Numerical study 
is concentrated on the comparison of phase velocity and attenuation coefficient among different 
wave modes. Moreover, effect of opening angles of a conical pipeline on propagation features is 
analysed. The work described in this paper is funded by the National Natural Science Foundation of 
China(No. 11404405, 11504427, 61601489, and 51675525), the Major Program of National Natural 
Science Foundation of China (No. 61690210 and 61690213) and by the National Innovation Train-
ing Project of Undergraduate Student(No. 20169002001). The authors gratefully acknowledge the 
funding. 
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