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Conventional beamforming(CB) has been widely used to identify sound sources. However, it suf-

fers from grating and side lobes and results in poor spatial resolution of the beamforming map. In 

this paper, we propose an approach that can dramatically improve the resolution. This method, 

called high resolution beamforming(HRB), takes the advantages of the compressive sensing 

which exploits sparsity to reconstructed underlying signal. The linearized Bregman iteration, 

which adds residue back during each iteration, is used in the proposed method. High computa-

tional efficiency is achieved by the HRB because it involves only scalar shrinkages and matrix-

vector multiplication. The proposed method is verified by synthetic and experimental data of a 

microphones array. Compared with the CB and the beamforming utilizing Tikhonov direct regu-

larization method the HRB delivers superior resolution of sources map in wideband frequencies. 
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1. Introduction 

Beamforming is an important sound sources identification method for manufacturing industry and 

transportation as it is robustness as well as convenient to implement [1, 2]. The basic idea of conven-

tional beamforming (CB) [3] is that the sampling signal of microphones array are delayed with dif-

ferent time and summed coherently to enhance the strength in the focus position. By plotting the 

sound pressure in the scan plane, the sources positions can be detected. 

Although CB achieves the desired function, this method is recognized as an approach with low 

resolution. Meanwhile, the grating lobes may be generated and side lobes are emerged with the beam-

forming outputs [4]. They together lead to so-called ghost image in the presence of sources. To im-

prove the resolution, several techniques have been proposed. Including some deconvolution methods, 

for instance DAMAS [5] by Brooks and Humphreys, DAMAS2 [6] by Dougherty, DAMAS-C [7] by 

Brooks, and LORE algorithm [8] by Ravetta, to name just a few. These algorithms increased the 

resolution, whereas they remained degraded performance in other aspects. For instance, the reference 

solution of DAMAS and DAMAS2 is an uncorrelated monopole that is unsatisfied in many cases. 

DAMAS-C requires impractical computational cost, and LORE is limited by the size of scan region. 

The drawback of deconvolution methods is the increased amount of calculation time due to additional 

variables introduced in the iteration.  

In the advance of signal processing, the emerging compressive sensing(CS) [9, 10] exploits the 

sparsity of data to recovery an underlying signal with measurements fewer than the Nyquist sampling 

rate. The sparsity of sound sources distribution holds in many practical cases. Consequently, a wide 

range of studies have emerged in the field of direction of arrive (DOA) estimation for passive sonar 

application. CS has been applied to single and multiple snapshots beamforming [11, 12] in which the 

feasibility was validated. 
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In this investigation, we propose a high resolution beamforming(HRB) algorithm, which takes the 

advantage of CS, to improve the resolution of beamforming sources map. It is achieved by eigenvalue 

decomposing and introducing of linearized Bregman iteration [13]. The kernel of the proposed 

method involves only matrix-vector multiplication and scalar shrinkages, which enjoys low compu-

tational complexity. The proposed method is formulated and verified in the following sections. 

2. Methods 

2.1 Mathematical formulas 

Consider an array of M microphones in the free field of N point sources. The vector of complex-

valued sound pressures p(w) received by microphones can be expressed as 

 p = Aq , (1) 

where A=[a1(k), …, aM(k)]T is so-called transfer matrix, am(k)=[e-jkrm1 /rm1, …, e-jkrmN/rmN]T is the 

transfer function between N sources and m-th microphone, rmn denotes the distance between the n-th 

source and the m-th microphone, k=w/c is the wavenumber, and q=[q1, …, qN]T is the sources strength 

vector. The superscript “T” denotes transposition operation. The conventional beamforming can be 

regarded as spatial filter that multiplies microphone signals by complexed-valued weight factors. It 

is formulated as 

( ) ( ) , 1,...,SH

s sb s r = g r p                                                         (2) 

with g(rs)H =[e-jk(rs-r1) /|r1-rs|, …, e-jk(rs-rM) /|r1-rs|] /M denoting the spherical wave steering vector in 

which rs and rm is the location of focal point and microphone, respectively. The superscript “H” 

denotes conjugate operation. The b(rs) in Eq. (2) is the output of CB that relies on the focus position 

of the grid. Taking all the b(rs), s=1, 2, …, S together, Eq. (2) can be rewritten as  
H

B = G p .                                                                      (3) 

Then, utilizing the cross spectral matrix(CSM) of the CB output, it can be expressed as 
H H

Q = G pp G .                                                              (4) 

The term H
pp  is referred as the CSM of received pressures. Since it is a complex normal matrix, 

this term can be eigenvalue decomposed as 

=H H
pp UΛU ,                                                                  (5) 

where U= [u1, u2, …, uM] is a unitary matrix consisting of the eigenvectors, and Λ=diag(λ1, λ2, …, λM) 

is a real-valued diagonal matrix. The λi in Λ corresponds to the eigenvector ui in U. By defining 

“eigenmode”, which is the product of eigenvector and its eigenvalue magnitude, orthogonal sub-

spaces method [14] can be introduced. The eigenmode takes the form 

 = 1,2,...,M.i i i i v u，                                                     (6) 

In a specific “target domain”, each eigenmode is produced by the corresponding sources distribu-

tion. The eigenmode vi and corresponding sources distribution ai satisfy 

= 1,2,...,M,i i i v Aa，                                                        (7) 

where A is the transfer matrix from focal points to microphone positions. Solving all the ai (i=1, 2, …, 

M) in Eq. (7) and summing them together, the overall noise sources distribution is collected, i.e., 
2

= 1,2,...,M.ii
i q a ，                                                        (8) 

The size of matrix A is M × S, in which M and S is the number of microphones and focal points. 

Each eigenmode is a linear combination of sources distribution. In the practical cases, the problem is 

usually underdetermined because M is generally much less than S. Meanwhile, the sources signal is 

sufficiently sparse, i.e., the number of nonzero elements in ai K satisfies K<<S. Through optimization, 

we can use the sparsity of ai to recover it from the sampling of Eq. (7). The solution can be obtained 

by solving the following basis pursuit problem 
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=min . . = .i i i is ta a v Aa
1
，                                                    (9) 

Many approaches have been developed to solve this convex optimization problem, including ISTA 

[15], FISTA [16], SISTA [17], and TWIST [18], to name a few. In this paper, we use linearized 

Bregman method, which is effective for large-scale L1 minimization problem, to solve Eq. (9).  

   The linearized Bregman iteration (LBI) method applied to Eq. (9) takes the form of two-line algo-

rithm 
1= ( )k k T k

i

  t t A Au v                                                              (10) 
1 shrink( , )k k   u t                                                              (11) 

where tk denotes an auxiliary variable and 

,

shrink( , ) 0,

,
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 .                                                      (12) 

The initial values of uk and tk are 0. The   is a fixed step size. It was proved by Osher et al in [13] 

that the iteration of Eq. (10) and Eq. (11) converges for 0<2 1TAA   and sufficient large  . The 

soft-thresholding function Eq. (12) is illustrated in Fig. 1. 

x

y

μ
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Figure 1: The function of shrink(x, μ) for each component of vector 

The modulus of each component in tk is individually treated as the input data of the soft-threshold-

ing function. And the phase angle remains unchanged. In the literature of optimization, Eq. (12) is 

known as proximal forward-backward iterative scheme under the framework of splitting methods [15, 

16]. Denoising of response can be achieved by the zeroing during the iteration. Meanwhile, the spar-

sity of output is realized. 

 

3. Results 

In this section, the validity of the HRB is tested. We compared the proposed method with CB and 

beamforming applying Tikhonov regularization to Eq. (7) in terms of source identification accuracy. 

The third method is referred as TRB in the following section. The dynamic range of all the display 

were set to be 20dB. 

3.1 Numerical experiments 

  In the most situation of source localization application, the sources are spatially extended. The 

practical sound sources can be regarded as the combination of sparsely distributions of simple point 

sources in the space. For this reason, monopole source and two coherent sources were considered in 

the simulation.  

In the first case, a monopole source placed at coordinate (0, 0, 1 m) was measured by a rectangular 

array of 81 elements at the plane of z=0. The grid spacing was 10cm. The three beamformers were 

performed using synthetic data at 2kHz and 5kHz. The signal-to-noise ratio(SNR) was set to 20dB to 

take consideration of the data disturbance. The performance of CB TRB and HRB is shown in Fig. 2. 

At the both frequences of 2kHz and 5kHz, the outputs of HRB had the narrowest mainlobe among 

three beamformers. Meanwhile, for relatively lower frequence (2kHz), all the three beamformers 
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delivered bigger main lobe than these of high frequency. That means relatively poor spatial resultion 

in the scan plane. It indicates that similar to CB and TRB, HRB is more suitable for high frequences. 

The secend extremum in Fig. 2, which corresponded to the sidelobes, disappeared in the results of 

HRB(c,f). Beasides, by contrast (a,b) and (d,e), TRB generated slightly bigger side lobes. To interpret 

the result of HRB, which can obtain a narrow main lobe, we have to refer to Eq. (10) and Eq. (11). 

During iteration Eq. (10) and Eq. (11), the linearized noise in signal is first added back to tk. Then, 

the sparse solution is obtained, and the noise is removed via applying the thresholding operator in the 

next step. It was proved [13] that the consequence uk converges to the solution of basis pursuit prob-

lem Eq. (9) for a large  . While regularization method of TRB, which combines side constraint with 

residual norm, suffers from grating lobes and side lobes as well as relatively poor resolution. Addi-

tionally, TRB applied to Eq. (7) relies heavily on regularization parameter. 

 
(a)                                             (b)                                               (c) 

 
   

(d)                                             (e)                                               (f) 

Figure 2: Beamforming outputs of the hypothetical monopole source at (0, 0, 0) with (a) CB, 2kHz;  

(b) TRB, 2kHz;(c) HRB, 2kHz;(d) CB, 5kHz; (e) TRB, 5kHz;(f) HRB, 5kHz. 

Figure 3 illustrates the x-axial performance (normalized sound pressure level) of source 

identification. The source was correctly detected for all three beamformers reached a maximum at 

the source position. When the scan point deviated from the source position, the output of HRB de-

creased sharply to zero everywhere other than in the main lobes region (without the logarithmic pro-

cess of the display). At frequency of 2kHz, -10 dB mainlobes width of HRB was roughly one fifth of 

that of CB and TRB. Compared with HRB, the other two methods produced broader main lobes. The 

sparsity of solution in HRB results in the short blue line in this figure. The proposed method yielded 

superior quality of sources identification. The zero response in Fig. 2 and  Fig. 3 can be explained by 

shrinkage function defined by Eq. (12). As shown in Fig. 1, the output of HRB for each component 

whose modulus between −μ and μ is compulsively set to zero. It can be found in many literatures of 

signal and image processing to minimizes L1 norm by the shrinkage [15,16,17]. As contrast, CB is 

governed by Gabor limit. The filter response in the scan region cannot achieve zero. Indeed, CB and 

TRB cannot achieve the sparsity of solution with limited number of microphones. HRB delivers zero 

response mathematically. 
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(a)                                              (b) 

Figure 3: Performance comparison in the x-axis, where (a) 2kHz; (b) 5kHz. 

In the second case, two coherent sources were defined at coordinates (-0.4 m, 0, 1 m) and (0.4 m, 

0, 1 m). The simulation parameters, including the number of grid points, scan area, SNR, sources 

distance, and the microphones array were the same as those of the first simulation. The results are 

shown in Fig. 4. By comparing Fig. 4(d) and (e), it is seen that the radius of main lobe of CB is slightly 

narrower than that of TRB at 2kHz. Meanwhile, similar to the results of monopole source localization, 

HRB significantly reduced the radius of main lobe and thus improved the resolution at both frequen-

cies of 2kHz and 5kHz. At higher frequency, HRB obtained sufficiently spare outputs in the scan 

plane.  

   
(a)                                             (b)                                               (c) 

   
(d)                                             (e)                                               (f) 

Figure 4: Beamforming outputs of the hypothetical coherent sources at (0, -0.4, 1) and (0, 0.4, 1) with (a) 

CB, 2kHz;(b) TRB, 2kHz;(c) HRB, 2kHz;(d) CB, 5kHz;(e) TRB, 5kHz;(f) HRB, 5kHz. 

The result is more apparent in Fig. 5. At 2kHz, CB gave a fake lobe (local maximum) between 

the two sources, and TRB obtained  stronger side lobe compared withCB. CB delivered better reso-

lution than TRB at high frequency. In the cases of monopole and coherent sources, HRB was able to 

localise the sources at highest resolution among three methods. 



ICSV24, London, 23-27 July 2017 

 

6  ICSV24, London, 23-27 July 2017 

   
(a)                                              (b) 

Figure 5: Performance comparison in the x-axis, where (a) 2kHz;(b) 5kHz. 

To evaluated the performance of the proposed method in terms of resolution for a wide frequency 

band, we defined main lobe width B, which is the beam area within -12dB down from the peak value 

of main lobe. The simulation condition was the same as the aforementioned simulation. The resolu-

tion of the three methods are shown in Fig. 6 (the beam width is normalized by the wavelength). It 

also shows that HRB delivers superior resolution among three methods. Meanwhile, HRB is robust 

for tested frequency band for both monopole and coherent sources. 

   
(a)                                              (b) 

Figure 6: -12dB beam width varying radiation frequency. (a)One monopole. (b)Two coherent sources. 

As for the computational cost of the proposed method, it depends on the number of iterations. In 

our study, the iterations are limited to 300 steps. At one simulation of our PC (AMD FX-4130), the 

computational time of HRB, CB and TRB is respectively 8.1s, 3.8s and 4.2s. The computational 

time is acceptable. Additionally, the HRB does not rely on the response of CB like deconvolution 

methods, which iteratively remove the side lobes of CB outputs. 
 

3.2 Real measurements 

 

Figure 7: Setup for real measurement in a normal room. 

To verify the proposed method in this paper, real measurement was performed in a normal room 

does not strictly satisfying a free sound field, which was more practicable than anechoic chamber. 

Two audios type Nogo T10 were set up 1m away from the array. The sources were coherent with 

single tone at 2kHz and 5kHz. The sound pressure was measured by microphones type B&K 8192-A 

with sampling rate 16384 Hz. The “Scan&Paint” technology [19], which can describe time stationary 
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fields by mixing signal and tracking information, was used to reduce the number of microphones. A 

virtual array of 81 elements spacing 10cm was realized by 4 microphones. Another 27 elements vir-

tual array was previously used to perform 3D beamforming by the authors [20]. Figure 7 shows the 

experimental layout. The coordinates of audios were about (-0.3m, 0.3m, 1m) and (0.3m, -0.3m, 1m). 

The array was located at plane z=0. 

Figure 8 shows the experimental results at frequencies of 2kHz and 5kHz. Both CB and HRB 

were able to correctly locate the audios sources. The main lobes were convolved with huge amount 

of side lobes produced by TRB in Fig. 8 (b) and (e). Meanwhile, it was observed that TRB failed to 

distinguish the two sources at 2kHz. Compared with the other two methods, result of TRB is more 

easily contaminated by the complex background noise. Similar to the results of simulation, the HRB 

method exhibits good performance in spatial denoising and delivering high resolution sources maps. 

 
(a)                                             (b)                                               (c) 

 
 (d)                                             (e)                                               (f) 

Figure 8: Beamforming outputs of the real measurements with (a) CB, 2kHz;  

(b) TRB, 2kHz;(c) HRB, 2kHz; (d) CB, 5kHz; (e) TRB, 5kHz;(f) HRB, 5kHz. 

4. Conclusions 

In summary, a novel method called high resolution beamforming for sound sources localization 

based on acoustic array signal processing is proposed in this paper. It is an iterative signal recovery 

method based on compressive sensing. In comparison with CB and regularization method applied to 

Eq. (7), which are used to sound source localization, an originality of the proposed method is the 

using of the sparsity of sources distribution to fulfil the requirements of improving resolution. The 

linearized Bregman iteration, which involves only vector-matrix multiplication, is used to solve this 

problem. To validate the proposed method, comparison of beamforming outputs for single and co-

herent sources were performed. The numerical experiments and real measurements showed that the 

recognition accuracy is improved for a wide band frequency. The proposed method gives a feasible 

approach to detect sound sources in the frame of sparsity. 
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