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The frequency loci veering phenomena of spherical reticulated shells are firstly studied by in-

troducing random detuning parameters with normal distribution into the structural stiffness dis-

tribution of radial members and latitudinal members respectively. The finite element method is 

applied to analyze the influences of two assumed detuning patterns on natural frequencies sys-

tematically. It is found that the frequency loci veering phenomenon does occur between some 

typical detuning cases by the 1st detuning pattern. Then, the Frequency Curvature Coefficient 

Curvi is proposed to determine the position of veering points. Furthermore, The detuning effects 

induced by the 2nd detuning pattern, especially the frequency loci veering phenomena are also 

numerically analyzed for the reticulated shell. It is revealed through numerical simulation that 

the structural detuning could cause the frequency loci veering and the exact position of veering 

point can be judged by Curvi. 
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1. Introduction 

In practical engineering, the perfect structure is almost nonexistent. Owning to the manufactur-

ing or construction errors, geometrical irregularity, material defects and structural damage, etc., the 

imperfections of the structure are inevitable. Imperfection is also called “detuning” and correspond-

ingly the structure with imperfection is called a “detuned” structure. Over the past several decades, 

many researchers studied the curve veering phenomenon for the detuned structures. As early as 

1962, Claassen [1] reported that some interesting phenomenon appeared in the transverse vibration 

analysis of a thin rectangular cantilever plate. In fact, the “avoid crossing” of frequency loci men-

tioned by Claassen is just the curve veering phenomenon. In 1974, Leissa [2] pointed out that the 

curve veering phenomenon might be an aberration induced by the approximation method--Galerkin 

method in the study on the transverse vibration of rectangular membrane. But, in 1981, after inves-

tigating the same example taken by Leissa, Kuttler verified that curve veering could be an actual 

phenomenon and was not always caused by the approximation techniques [3]. Schajer [4], Perkins 

and Mote [5] also verified the existence of the curve veering in both the approximate and exact so-

lutions associated with the vibration of a rotating circular string, respectively. Later, Gottlieb [6], 

together with Perkins and Mote [7], discussed the curve veering of a coupled pendulum and a cou-

pled oscillator, emphasized the importance of the coupling to the veering process, and clarified the 

differences between the vibrations of two structures. In other literatures, the curve veering phenom-
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enon was studied in more and more complex structures, such as three-dimensional, cyclically sym-

metric CPVAs (Centrifugal pendulum vibration absorbers) [8], weakly coupled double beam system 

[9], detuned blade disks [10], pretwisted rotating compressor blade [11], rolling tyre [12], rotating 

rectangular thin plate [13], cable-stayed and suspension bridges[14], and so on.  

It is clear from the foregoing that the structural detuning may significantly affect the vibrational 

modal properties of the structure, such as the frequency loci veering phenomena may occur; the 

phenomena closely depends on the continuous variation of some structural detuning parameters; 

and these researches of frequency loci veering mainly focused on periodic structures or symmetrical 

structures. As one of the periodic structures with cyclic symmetry, spherical reticulated shell struc-

tures also consist of many identical or similar member bars; however, to our knowledge, little work 

has been devoted to the analysis of the frequency loci veering in these architecture structures with 

many applications. As mentioned above, the imperfections of the structure are inevitable. If we ig-

nore the detuned-effect and still analyze the dynamic behaviour of the detuned structure based on 

the structural frequencies characteristics of the tuned structure, it might cause inaccurate or even 

completely erroneous conclusion on the parameter identification and structural health monitoring.  

Therefore, it is necessary to investigate the frequency loci veering of reticulated shell. In this study, 

the motivation is to verify if the reticulated shell structure has similar frequency loci veering behav-

ior by the FEA method. Moreover, this paper is also to pursue a method for determining the posi-

tion of veering points.  

The main research work in this study includes: (1) A number of studies on the curve veering 

phenomenon are reviewed; (2) the FEA model of a single-layer spherical reticulated shell is estab-

lished. The natural frequency characteristics of the tuned reticulated shell are analyzed; (3) the fre-

quency loci veering phenomenon for two detuning patterns is studied and the characteristics of fre-

quency loci veering in the spherical reticulated shell are discussed. 

2. Frequency characteristics Analysis of tuned reticulated shell 

2.1 Analytical model 

 

As shown in Figure 1, a single-layer spherical reticulated shell consists of radial members and 

latitudinal members. The span and rise-span ratio are 30m and 1/4.4, respectively. All the members 

are steel circular pipes with the cross-section sizes: Ф180×12 for radial members and Ф108×4.5 for 

latitudinal members. The material of members is Q345 steel with the density of 7850kg/m
3
, the 

Young’s modulus of 206GPa and the Poisson’s ratio of 0.3. The uniformly distributed vertical load 

of the roof is 60kg/m
2
. Because it is difficult to achieve an exact analytical solution for this kind of 

large and complex structures, the powerful FEA technique is used to analyze the modal properties 

of the reticulated shell. 

In the FEA model, all the members are assumed to rigidly be connected at nodes and treated as 

Beam188 elements. The Beam 188 element is two-node beam element in 3-D defined in ANSYS 

and based on the beam theory of Timoshenko which includes shear-deformation effects. The verti-

cal load of the roof is converted to lumped masses at the nodes of the reticulated shell and then the 

lumped masses are simulated by using the MASS21 element. The self-weight of the structure is 

applied and solved with the help of macro file compiled in APDL of FEM software ANSYS. All the 

nodes at the fourth ring are assumed to be fixed, as marked in Figure 1. 

In order to facilitate the following description, all the radial members are divided into 24 groups 

and numbered in Figure 1. Each group consists of 6 radial members. All the latitudinal members are 

also divided into 24 groups, for example, the 1st group of latitudinal members denotes all the latitu-

dinal members between the 1
st
 and 2

nd
 groups of radial members; the 2

nd
 group of latitudinal mem-

bers denotes the latitudinal members between the 2
nd

 and 3
rd

 groups of radial members and so on.  
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Figure 1. Analytical model of reticulated shell        Figure 2. Natural frequencies of tuned structure 

2.2 Frequency characteristics of tuned structure 

Using the FEA software ANSYS, the first 50 natural frequencies are extracted with the Block 

Lanczos Method from the tuned reticulated shell in Figure 1. From the curve in Figure 2, it can be 

seen that: (1) the frequencies of the tuned structure are divided into two typical frequency bands. 

The 1
st
 frequency band (from the 1

st
 frequency to the 27

th
 frequency) and the 2

nd
 frequency band 

(from the 28
th

 frequency to the 50
th

 frequency) are distributed on the open interval (0, 5) and the 

open interval (10, 12), respectively. The 2
nd

 frequency band is more intensive than the 1
st
 frequency 

band. (2) The reticulated shell structure has very high modal densities. Because of the symmetrical 

properties of the tuned structure, there are repetitive frequency features in the first 50 natural fre-

quencies.  

Previous studies show that the structural detuning destroys the regular feature of the mode and 

might lead to the occurrence of frequency loci veering phenomenon. Undoubtedly, it will lead to 

completely erroneous results in analyzing the detuned structure based on the structural dynamic 

properties of the tuned structure. Therefore, it is essential to investigate how the presence of detun-

ing affects the frequencies characteristics of the structure. 

3. Random numbers and detuning patterns 

3.1 Generation of random numbers 

The distribution of detuning parameters is random actually, so how to generate random number 

is crucial for an accurate analysis of the detuning-induced effect. It should be pointed that random 

numbers produced by software are not random in a strict mathematical sense [15]. In other words, 

they are pseudo-random and pseudo-independent. However, software applications, such as 

MATLAB, use algorithms that make the results pass various statistical tests of randomness and in-

dependence. Hence, we can use these numbers as if they are truly random and independent. One 

benefit of using pseudo-random numbers is that one can repeat a random number calculation at any 

time. This can be used to generate the detuning parameters with the same form in the distribution 

and different standard deviation by specifying the same generator and seed type together.  

The detuning ratio   is introduced into the structure by generating sample size 24 from a normal 

distribution with the mean 0 and the standard deviation  .   represents the ratio between the de-

tuning and ideal parameters, and reflects the detuning level. Different detuning cases correspond to 

the   samples with different  . The limit of   is varied from 0.0025 to 0.3200 with a step 
=0.0025, so there are 128 detuning cases. Some typical detuning distribution patterns of   are 

shown in Figure 3. 
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Figure 3. Detuning distribution patterns 

3.2 Detuning patterns 

The analyses of two different detuning patterns, stiffness detuning pattern of radial members, and 

stiffness detuning pattern of latitudinal members, are carried out to reveal the detuning-induced ef-

fect on the frequency loci of the spherical reticulated shell. 

Detuning pattern 1: the detuning is introduced into the 24 groups of radial members by altering 

their stiffness with  . 

Detuning pattern 2: in the same manner as the 1st detuning pattern, the stiffness detuning is in-

troduced into the 24 groups of latitudinal members by  . 

It is worth noting that 0   represents the tuned case. 128 detuning cases and one tuned case 

have been calculated for each detuning pattern.  

4. Frequency loci veering behavior of two detuning pattern 

4.1 Frequency loci veering of the 1st detuning pattern 

The detuning effect induced by the 1
st
 detuning pattern, especially frequency loci veering charac-

teristics, is numerically analyzed for the reticulated shell in Figure 1. The first 50 natural 

frequencies for the 128 detuning cases corresponding to the 1
st
 detuning pattern and one tuned case 

are extracted from the FEA data of the spherical reticulated shell. Figure 4 shows the relationship 

between the frequencies 1-16 and the standard deviation of detuning parameters   in succession 

from the bottom upward, in which the alternation of solid and dotted lines represents the difference 

of two adjacent frequency loci. There are pairs of vibration modes with the same frequency when 

0  , but the locus of the same frequency then disperse in two different directions which indicates 

that the detuning damages the symmetry properties of the tuned structure and the multiplicity 

disappears.  

Figure 4 shows that the loci of frequencies 1-16 versus   do not violently, but after the 16
th

 

frequency, some interesting phenomenon occurs as shown in Figure 5. As   increases, the 17
th

 and 

18
th

 frequency loci first approach each other and almost intersect at the region R, then rapidly 

diverge like taking the previous path of the other, respectively. Obviously, the curve veering 

phenomenon of frequency loci occurs in the region R. The difference between the two frequencies 

has the minimum value 8.621×10
-5

 Hz when 0.2975  , only about 0.002% of the 17
th

 frequency 

value. In addition, the 18
th

 and 19
th

 frequencies are the same when 0  , but they are then divided 

into two branches, which also signifies that the symmetry of the tuned structure is destroyed and the 

modes with the same frequency become the modes with distinct frequencies.  

In order to describe the frequency loci veering phenomenon, the Frequency Curvature 

Coefficient (Eq. 1) is proposed to calculate the curvature of the frequency locus 
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Figure 4. Loci of frequencies 1-16 versus σ           Figure 5. Loci of frequencies 17-19 versus σ 

where iCurv  represents the curvature of the ith frequency locus; i  and   are the first-order 

derivative and the second-order derivative of the ith frequency locus versus  , respectively. It 

needs to note that the MATLAB built-in routine “gradient()” and “del2()” are used to calculate i  

and   through computing a single-sided difference at the end data points and a central difference 

at the interior data points respectively, which can return an array with the same number of elements 

as the input data.  

Figure 6 displays the curvature variation of frequencies 1-17. It can be seen that the curvature of 

the 17
th

 frequency locus significantly increases in magnitude and has a peak at the position of 

0.2975  , while others have not peaks. It needs to indicate that X is   value and Y is the 

curvature value at the peak corresponding to the veering region L in Figure 6. Figure 7 shows that 

the variation in the curvature plot of the 18th frequency locus; it also has a peak at the position of 

0.2975  . The peak values of curvature plot in Figures 6 and 7 are 72.89 and 68.09, respectively. 

The position of veering points is very clear in the Curvi variation of frequency loci. 

             

Figure 6. Curvature of 1-17
th
 frequency loci             Figure 7. Curvature of 18

th
 frequency locus 

Except the 17
th

 and 18
th

 frequencies, the 26
th

 and 27
th

 frequencies also present the frequency loci 

veering phenomenon. At 0.3100  , the 26
th

 and 27
th

 frequency loci do not cross but their 

frequencies, 4.909272Hz and 4.910236 Hz, are quite close indeed (not shown here for brevity). 

Therefore, two pairs of frequency loci (the 17
th

 and 18
th

 frequencies, the 26
th

 and 27
th

 frequencies) 

present the curve veering phenomena within the 1
st
 frequency band of the tuned reticulated shell in 

Figure 2. The exact position of veering point can be judged by the Curvi variation of the frequency 

locus. 

Similarly, Figure 8 shows the variation of frequencies 32-40 versus  . It presents an interesting 

feature that the curve veering phenomenon presents in more than one region for the same frequency 
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locus. For example, the 37
th

 frequencu locus has 5 veering regions with the two adjacent frequency 

loci. Statistical data demonstrates that the numbers of veering regions corresponding to the 1
st
 and 

2
nd

 frequency bands are 2 and 31 respectively. It can be seen that the more intensive the modes are, 

the more possible the frequency loci veering would be. Also, the exact position of veering points 

can be determined by the peak position of the curvature variation of frequency loci. 

 

Figure 8. Loci of frequencies 32-40 versus σ 

4.2 Frequency loci veering of the 2nd detuning pattern 

The detuning effects induced by the 2
nd

 detuning pattern, especially the frequency loci veering 

phenomena are also numerically analyzed for the reticulated shell. The first 50 natural frequencies 

for the 128 detuning cases corresponding to the 2
nd

 detuning pattern and one tuned case are also 

extracted from the FEA data of the spherical reticulated shell. Loci characteristics of varying 

stiffness of latitudinal members are discussed in this section too. Since the frequency loci do not 

violently change before the 16
th

 frequency, the 4 loci of frequencies 16-19 versus   are shown only 

for a representative instance in Figure 9. Evidently, the 16-19
th

 frequency loci also present the 

veering phenomena. 

 

Figure 9. Loci of frequencies 16-19 versus σ 

It can be seen from Figure 9 that there are 3 veering regions marked as L1, L2 and L3. The 16
th

 

frequency locus veers away from the 17
th

 frequency locus in the veering region L1. 

Correspondingly, there is a peak 149.2 on the curvature variation of the 16
th

 frequency at the 

position 0.2450   as shown in Figure 10. Similarly, the 17
th

 frequency locus veers away from the 

16
th

 and 18
th

 frequency loci in two veering regions L1 and L2, respectively; correspondingly, the 

curvature variation of the 17
th

 frequency has two peaks 248.9 and 190.9 at the position 0.2450   

and 0.2175   in Figure 11. At 0.2450  , the 16
th

 and 17
th

 frequencies are 3.678148 Hz and 

3.678699 Hz respectively. It is clear that the position of veering points can be judged by the peak 

position of curvature variation and the pair of frequencies in the same veering region L1 are quite 

close. The analyses of the 18
th

 and 19
th

 frequency loci are the same as that of the 16
th

 and 17
th

 

frequency loci, so their description will not repeat again.  
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Figure 12 shows the variation of frequencies 31-39 versus  . Besides, the similar feature that 

the curve veering phenomenon occurs in more than one region for the same frequency locus, is also 

found in both the 1
st
 and 2

nd
 frequency bands for the 2

nd
 detuning pattern, such as the 17

th
 and 18

th
 

frequency loci (Figure 9) for the 1
st
 frequency band and the 38th frequency locus (Figure 12) for the 

2
nd

 

             

Figure 10. Curvature of 16
th
 frequency locus            Figure 11. Curvature of 17

th
 frequency locus 

frequency band. Statistical data demonstrates that there are 5 and 15 veering regions within the 1
st
 

and 2
nd

 frequency bands, respectively. The number of veering regions in the 2
nd

 frequency band is 

more than that in the 1
st
 frequency band. This is consistent with the conclusion of the 1

st
 detuning 

pattern. Also, the exact position of veering points can be judged by the peak position of the Curvi 

variation of frequency loci.  

 

Figure 12. Loci of frequencies 31-39 versus σ 

5. Concluding remarks 

Study on structural frequency loci veering phenomena is extended to the long-span space struc-

ture--reticulated shell. In this paper, the FEM simulations and dynamic analysis are applied to in-

vestigate the effect of variation in structural parameters on the phenomena; in addition, two detun-

ing patterns of stiffness and mass are proposed to reflect the configuration feature of the shell struc-

ture. The conclusions can be given as follows:  

1) The numerical simulation verifies that the frequency loci veering does occur between some 

particular detuning cases of single-layer spherical reticulated shell structure, for the two assumed 

detuning patterns of stiffness. 

2) One method using the curvature of frequency loci is proposed to judge the exact position of 

frequency loci veering.  

3) The possibility of the frequency loci veering is closely related to the intensity of modes. 

4) The potential influence of the curve veering phenomena on the parameter identification and 

structural health monitoring should be paid enough attention for civil engineering structures like 

reticulated shell. 
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